Pascal-2

Version 2.1 for RSX-11

Oregon

Software

Pascal_zr"

Version 2.1 for RSX

Abbreviated Manual

July 1985

Oregon
Sorfetwgare

Oregon
Software

The software described by this publication is subject to change without notice. Oregon Software
assumes no responsibility for the use or reliability of any of its software that is modified without the
prior written consent of Oregon Software.

Oregon Software holds right, title, and interest in the software described herein. The software, or
any copies thereof, may not be made available to or distributed to any person or installation without
the written approval of Oregon Software.

This publication, or parts of it, may be copied for use with the licensed software described herein,
provided that all copies include this notice and all copyright notices.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
sub-division (b}(3)(ii) of the Rights in Technical Data and Computer Software clause at 52.227-7013
of the Federal Acquisitions Regulations (FARs).

Name of Contractor and Address:
Oregon Software, Inc.
6915 S.W. Macadam Avenue
Portland, Oregon 97219
Phone: 503-245-2202

© 1985 Oregon Software, Inc. All Rights Reserved. Printed in USA, July 1985.

ISBN 0-92595801-8

Pascal-1, Pascal-2 and Oregon Software are trademarks of Oregon Software, Inc.
DEC, PDP, RSX, RSTS and RT-11 are trademarks of Digital Equipment Corporation.
TEX is a trademark of the American Mathematical Society.

Contents

Preface . ..
Thanks to... .

Pascal-2 V2.1 for RSX: System Features .
The Pascal-2 Software Development System
Pascal-2 Documentation Package
Style Notes . .

Pascal-2 V2.1 for RSX: System Guide .
Getting Started
Compiling the Program
Correcting Compilation Errors
Correcting Run-Time Errors
The Program Listing
Compiler Commands .
Compilation Switches . .
Program Options . .
Compiler Options
Code Switches .
Checking Switches
Processor Switches
Embeddad Switches
Frogram Options .
Compiler Options .
Run-Time Checking Switches .
Compilation Examples
The Task Builder

......

......

........

......

......

........

.........

...........

...........

.......

..............

...............

.......

......

........

.....

..........

.........

......

......

......

.....

T E
< <

Pond
[

L] .
VN N i CORD et s s e QD R e e

[]
NG
(-2~ -

2-7
2-8
2-9
2 10

..211

List of Figures

-= The Pascal-2 Software Development System

iii

....................

Preface

We are grateful to the many readers whose thoughtful and perceptive suggestions have helped us
improve our manuals. Please feel free to tell us your opinion of this abbreviated manual; we find
both general comments and specific criticisms to be helpful. Address your comments directly to:

David Spencer, Manager
Technical Publications
Oregon Software

6915 SW Macadam Ave.
Portland, Oregon 97219

We appreciate hearing from you.

Thanks to...

Oregon Software got its start at OMSI—the Oregon Museum of Science and Industry. OMSI is a
private educational organization chartered “to enhance the general public understanding of science
and technology, with a strong commitment to education,” particularly of youth. It was in the
Research Laboratory at OMSI that we began writing software. Seven of us came from OMSI to
found Oregon Software in September, 1977. Because of the close association, the name “OMSI”
stayed with us for a while, and we continue to support OMSI and its educational programs.

As part of cur own research, we've been using and distributing TEX, a text-processing system
developed by I:a Knuth at Stanford University. This publication is typeset in the Computer Modern
Roman family «f type faces with the TEX system. Draft versions were produced at Oregon Software
on an Imprint-10 laser printer driven by TEX-in-Pascal and our VAX-11/780.

Special thanks to Barbara Beeton and Monty Nichols for their encouragement and assistance with
TEX and to David Kellerman and Barry Smith for developing TEX at Oregon Software.

Pascal-2 V2.1 for RSX: System Features

This abbreviated manual summarizes the use of Pascal-2 on PDP-11 running under the RSX
operating system. Included are an overview of the Pascal-2 development environment, a description
of the complete documentation package, and a System Guide that walks you through the basic steps
involved in running the Pascal-2 compiler.

The Pascal-2 Software Development System

Pascal-2 is an integrated system for software development. At the heart of the system is a trans-
portable multipass compiler that adheres to the Pascal standard while performing optimizations
to generate compact, fast code. The Pascal-2 system also offers sophisticated error checking dur-
ing compilations, extensive error reporting and recovery at run-time, a Debugger to examine the
dynamic state of a running program in a high-level Pascal context, plus other development utilities.

The Pascal-2 compiler accepts standard Pascal code created using any common text editor (EDT).
All actions of the compiler are invoked by basic command lines and switches, similar in format to
those of the Digital Command Language (DCL). The compiler permits calls to external routines both
in Pascal and other languages such as FORTRAN and the DEC assembly language MACRO-11. The
object code generated by the Pascal-2 compiler is linked with external and support library routines

by the DEC Task Builder.
lncluded ual
lerlry
™ Pascal Task
X4 .
Editor Rioind —| Builder eiable

PASMAT.
PB Lwtmg Erb"d‘.m
@ |
S | Debugger.
(hng) | Profiler

XREF,
PROCREF

—

The Pascal-2 Software Development Environment

The Pascal-2 system consists of the Pascal-2 compiler, the support library, the formatters
PASMAT and PB, the Debugger and Profiler, and the cross-references XREF and PROCREF.
The text formatter PROSE, not shown, is also a component of the system. The user creates
the Pascal source program, the included source files, and user libraries. The Text Editor and
Task Builder are supplied by the computer vendor.

Together, the components and features of the Pascal-2 software development system offer profes-
sional programmers a structured and unified environment in which to design, code, test, maintain,

1-1

Pascal-2 V2.1 for RSX: System Features

and improve software. As a result, programmers should be able to produce more reliable programs in
less time than they could with other programming packages. Further, use of the Pascal-2 compiler
allows programs to be transported to other computer systems with a minimum of change, thereby
accelerating future software development.

Pascal-2 Documentation Package

Documentation for Pascal-2 Version 2.1 includes the Pascal-2 User Manual for RSX, Update Package
No.2 for RSX, and the Installation Guide/ Release Notes.

The Pascal-2 User Manual for RSX contains information on the use of the Pascal-2 compiler and
related utilities on Digital’s RSX operating system. In general, we assume that readers of the manual
are programmers familiar with Pascal and the RSX operating system. Some sections assume a
detailed working knowledge of the Pascal language.

The user manual consists of five major guides:

o The User Guide serves as a quick overview of Pascal-2 on the RSX operating system. The guide,
written on a beginner’s level, takes you through the basic steps of compiling, correcting, and
running a Pascal-2 program. The User’s Guide also has brief explanations and examples of some
of the standard features and utilities of the Pascal-2 system.

o The Programmer’s Guide contains a detailed description of the low-level interface between
Pascal-2 and the operating system. The Programmer’s Guide also contains a miscellany of in-
formation on implementation-related problems, divided into two broad categories: error recovery
and implementation notes. The guide further provides explanations of I/O switches that allow
access to file system facilities. And finally, the guide describes Pascal-2’s optimizations and
provides helpful hints as to the cause of compile-time and run-time errors and ways to fix the
errors.

o The Language Specification describes Pascal-2's language features in detail. Since the second
edition of Jensen and Wirth’s User Manual and Report in 1978, the language has undergone
major changes, which are incorporated in the international Pascal standard, ISO 7185. Because
not everyone is familiar with that document, the Language Specification begins by summarizing
those changes and describing the ways that Pascal-2 implements them. Thus, the specification
serves not only as a description of our Pascal product but also as a review of the language’s
evolution since 1978.

e The Debugger and Profiler Guide describes two programs that alleviate some tedious aspects
of programming and improve the usefulness of the Pascal-2 system. The Debugger helps you
to find and correct errors that cannot be caught at compile time. The execution Profiler shows
less efficient areas of the program in terms of the number of statements executed.

o The Utilities Guide describes each of the following packages: program formatters, a text format-
ter, cross-reference programs, a package that helps interface assembler routines with Pascal-2
programs, and a dynamic string package. Each utility is described in detail, with examples.

Update Package No. 2 for RSX, documents specific features of the 2.1D software and records changes
made since the release of Update Package No.1. (Update Package No. 1 was previously distributed
and all changes then noted have been incorporated into the manual.) Update Package No. 2 and
provides a set of “change pages” for insertion into the user manual. (See “Documentation Notes”
in the release notes before attempting to insert the change pages from the update package into the
user manual.)

A set of release notes containing installation procedures accompanies each release of the software.

These release notes should be read before attempting to install the compiler and utilities on your
system. Each set of release notes should be kept with the manual for future reference because they

1-2

Pascal-2 Documentation Package

contain lists and descriptions of fixed bugs, new added features, and changes in the compiler and
utilities.

Style Notes

This Abbreviated Mznual and the Pascal-2 User Manual for RSX follow these style conventions:

Text:
Pascal reserved words, predefined symbols, switches and compiler directives are in boldface
typewriter type: begin, vrite, ¥include, nomain. Portions of examples referred to in the
text are in boldface typewriter type. System directives are in upper-case boldface ty pewriter
type: WAITFR, SPAYN. Program, system, and file names are in upper case: ROTAT, RSX.

Program Examples:
Commands, parameters and qualifiers that you should enter are in underlined boldface
typewriter: RUN_EX. These commands assume a carriage return at the end.

Program Listings:
The Pascal-2 compiler accepts any combination of upper-case and lower-case characters.
Examples in this manual have Pascal words in lower case and have user-defined words
with an initial capital letter and other capitalization as needed for readability, as shown
in this program fragment:

procedure Shov;
begin
SomeUseriAction;
vriteln(Result);
aad;

Single quotes (‘..") in examples and in text appear as *..*.

Terminology:
We use standard terms as they are used in documents describing the RSX operating system.

1-3

Pascal-2 V2.1 for RSX: System Guide

This System Guide is an extended version of the User Guide from the Pascal-2 User Manual. It
explains how to compile and run Pascal-2 programs, how to interpret program listings and error
messages, and it provides some details of the compilation process.

This guide assumes that you are familiar with simple RSX commands, a text editor (e.g., EDT), and
elementary Pascal programming.

Getting Started

The first step in running a Pascal program is to enter the program into the computer and store it
in the file system. Use a familiar text editor to enter the program and store it in a file with the
extension .PAS. The Pascal-2 compiler accepts free-format program files, so use blanks, tabs, new
lines, and form feeds as desired to help make the program readable.

This Pascal version of a program is called the source program, or the source file. All other versions
of the program are translations from the source program.

Complling the Program

After editing, you must compile the program—translate it into a form that the computer can execute.
The Pascal-2 compilation process is directed by the PAS system command, which causes the Pascal-2
compiler to prcdiice an object file with extension .OBJ. The Task Builder combines the object file
with the Pascal-_ library to produce an executable program with extension .TSX.

To illustrate tbe compilation process, let’s say that the following program is stored in the file
FIRST.PAS.

program First (output);
begin
write (*°*Things are best im their begimnings®');
writeiz (* -- Blaise Pascal');
end. :

Compilation and execution proceed as follows:

>PAS FIRST

>IKB FIRST/FP/CP = FIRST,LB:[1,1]PASLIB/LB

>RUN_FIRST

*Things are best in their beginnings® -- Blaise Pascal

As the example shows, the .PAS, .OBJ, and .TSX extensions may be omitted from file names on
commands to the Pascal-2 system, but such extensions must be included in commands to other RSX
system programs such as the editor. Notice also that in this example, no errors were detected. The
next example shows what happens if detectable errors are present in the source program.

Correcting Compllation Errors

Many times, a program contains syntax errors. The Pascal-2 compiler detects nearly 150 types of
these “grammatical” errors in a program: errors such as missing semicolons, undefined identifiers,
missing begin and end reserved words, and similar mistakes. As an example, the following program

Pascal-2 V2.1 for RSX: System Gulide

contains a deliberate error: a semicolon is missing between the program heading and the reserved
word begin.

prograa Second (output)
begin

yriteln ('Things get vorse as they continve');
end.

Semicolon errors (the most common errors made by beginning Pascal programmers) are always
detected by the compiler:

>PAS SECOND

Pascal-2 RSX V2.1D 9-Feb-84 7:08 AM Site #1-1 Page 1-1

Oregon Softvare, 6915 S¥ Macadam Ave., Portland, Oregon 97219, (503) 245-2202
SECCHD

1 prograa Second (output)
-20
sss 20: Use ';' to separate statesents

sss There was 1 line with errors detected sse
?Errors detected: 1

For each detected error, a line of the source program is printed with an arrow indicating the
approximate position of the error and a message describing the error. (The number “19” is the
error message number generated by the compiler.)

The Program Listing

To correct an error, you often need to see more of the program than just the line on which the error
appears. The Pascal-2 compiler can be directed to display the entire program, with all detected
errors and other information. This is the “listing” of the program.

To obtain a listing file (.LST), include the 1ist switch in the compilation command line:
>PAS SECOND/LIST
To get a program listing at a terminal, specify TI: as the listing file on the command line, as shown

in the following example. The listing also may be written to the line printer or by default to a disk
file.

>PAS THIRD,TI: = THIRD/LIST
Pascal-2 RSX V2.1D 9-Feb-84 7:08 AM Site #1-1 Page 1-1

Oregon Software, 6915 S¥ Macadam Ave., Portlaad, Oregom 97219, (503) 245-2202
THIRD,TI: = THIRD/LIST

1 prograa Third (output)
~20
sss 20: Use ';' to separate statesents
2 begin
3 sritela ('Love or hate alters the aspect of justice');
4 end.

sssThere was 1 line with errors detected sss

Getting Started

The listing is printed in pages, with a heading on each page showing the program name, the exact
version of the Pascal-2 compiler, the date and time. The listing also prints out, in the left-hand
column, the line number for each line of the program. You also may use the errors switch to create
a listing file containing only the lines with detected errors.

As illustrated in the previous example, a compilation switch modifies the compilation process in
some way and is signified by a slash followed by a descriptive name. The next section describes all
Pascal-2 compilation switches and their functions illustrated by samples of the compilation process.

Correcting Run-Time Errors

The errors discussed so far have been compilation errors—errors detected by the compiler. Run-time
errors, on the other hand, occur when a program is executing, after it has been compiled and linked.

A run-time error such as “array subscript out of bounds” stops the program at the point of error.
The Pascal-2 error reporting system prints header information and the error message, then traces
the program’s execution history, procedure by procedure, from the point of error back to the main
program. The error traceback, or “walkback,” is intended to make debugging easier by showing
precisely where the program stopped and which procedures were called to reach that point.

The following is an example of a run-time error and procedure walkback. (The program has already
been compiled and linked.) Line numbers appearing in the walkback correspond to line numbers in
the source listing, not line numbers in individual procedures.

>RUN_CUSTOM

I70 -- Fatal error at user PC= 7244
Array snascript out of bounds

Error occurred at line 64 in procedure writelastname
Last cailed from line 90 in procedure buildcustomerfile
Last cailed from line 103 in program customers

The first line of the walkback contains header information about the task and gives the task name
or terminal port, the type of error (fatal or I/O) and the program counter at the time of the error.

The second lice of the walkback is the error message issued by the error reporting system. (If the
error is I/O-related, an additional line is printed that provides the system I/O error code and the
name of the file causing the error.)

The third line shows the location of the error in terms of source program lines. The remaining lines
of the walkback indicate the reverse order in which the procedures were called.

Pascal-2 also includes the ability to trap and recover from run-time I/O errors and to print additional
information about the error.

A complete list of run-time error messages with explanations appears in Appendix B of the Programmer’s
Guide in the Pascal-2 User Manual for RSX. A more detailed explanation 1/O error trapping and
recovery also appears in the RSX Programmer’s Guide in the section "Run-Time Error Recovery.”

2-3

Pascal-2 V2.1 for RSX: System Gulde

Compiler Commands

All Pascal-2 compilation commands are divided into three parts: the compiler invocation command,
the file specifications, and the compilation switches.

The compilation syntax for Pascal-2 is this:

> oyt e, listing-file=i itc

where the components of the compilation line are supplied as follows:

input-files

The only required file specification is at least one input file. Multiple input files
are concatenated in order, from left to right, so that a large program can be split
into separate files or so that a common set of definitions can be placed in a configuration
file. With “source concatenation” no input file can contain a program statement,
except for the first file listed. If no output specification is given, the output is deter-
mined by the compilation switches; the file name is taken from the last input file
specified and the output files are placed in the default directory. The default in-
put file extension is .PAS. Multiple input files are separated by commas.

output-file
The output file specifies the name of the file containing object code output, with
a default extension of .OBJ. If the macro compilation switch is specified, the out-
put file contains assembly code and the default extension is .MAC.

listing-file
The listing file receives the compilation or error listing. The default listing file ex-
tension is .LST.

switches Program compilation is affected in some way by one or more of the options described
in the next section. Examples in this manual show the compilation switches after the
last file specification, but switches may appear after the invocation command or after
any file specification. A switch applies to the entire compilation command regardless
of whether it appears before or after the file specifications.

Compllation Switches

Compilation switches provide control over the files generated and over some aspects of the generated
code. A switch is signified by a descriptive name (e.g., check). A switch name beginning with no
reverses the effect of the switch (e.g., nocheck). A switch name may be abbreviated as long as the
shortened form is sufficient to identify the switch. Three characters of the switch name (excluding
the no) always identify a Pascal-2 compilation switch (e.g., che, noche; mac, nomac).

Some switches, such as object and macro, are incompatible, causing the error message “conflicting
switches specified” if used in the same compilation.

2-4

Compller Commands

Pascal-2 compilation switches are:

Program Optlons

double

pascall

nomain

All real variables are in 8-byte floating-point format. You also must use colon notation
(e.g., E:18:15) within the program to obtain double-precision values in the write
statement. Default is “off”: real variables are in 4-byte format.

Specifies that the interface to external procedures be compatible with Pascal-1. This
interface is a bit less efficient than that of Pascal-2; the pascall switch should be used
only when required. Default is the Pascal-2 interface.

No main program is expected; only procedures are compiled. This switch is used most
often to compile modules containing only external procedure definitions. If a main
program is found, an error message is generated saying that extra statements have
been found. Default is main: a main program is being compiled.

Specifies that global-level variables are local to the compilation unit and are shared
only with other external routines that have been compiled with the same program
name and with owa. Default is “off ”: global variables are shared.

novalkback

Disables the generation of line number and procedure name tables for the procedure-
by-procedure walkback that is displayed on the terminal when a program contains
a run-time error. The run-time message header and error message are printed but
not the walkback. Default is valkback: the tables are generated, and the full walkback
in wource terms is displayed after the message header and error message. The debag
sompilation switch disables the generation of the error walkback.

Compller Opiions

errors

list

debug

profile

FRequests that the listing file contain only lines with errors. Unless 1ist is specified,
the default is “on” and errors are printed on the terminal. When 1ist is specified,
the default is “off” and all lines are printed in the listing file. This switch has no
¢f2ct when used with the debug switch or the profile switch, because both of these
switches always generate a listing file.

Requests a full source listing in the listing file. If a listing file is specified, the default
is “on”; otherwise the default is “off.”

Requests generation of code and auxiliary files to interface with the Pascal-2 Debugger.
Default is “off.” The debug switch disables the generation of the walkback. This switch
cannot be used with the profile switch or the errors switch.

Requests an execution profile when the program is run. Default is “off.” The switch
cannot be used with the debug switch or the errors switch.

2-5

Pascal-2 V3.1 for RSX: System Gulde

Code Switches

object

RacCro

Generates an object format output file with default extension .OBJ. Default is normally
“on”; object code is generated. The switch is “off” when noobject is specified or when
no output file is provided on the command line. The switch cannot be used with the
macro switch.

Generates MACRO-11 code in the output file. This code may be assembled by the
MACRO assembler command to produce an object file. When macro is specified, object
is set “off” and the default extension for the output file becomes .MAC. Default of
macro is “off.” The macro switch cannot be used with the object switch.

Checking Switches

nocheck

standard

test

times

Disables all run-time checks, including index range checks, subrange assignment checks,
pointer checks, stack checks, case label checks, and divide-by-zero checks. Note that
compilation errors are still detected. Thus, if socheck is specified, var A:array [2..10]
of integer; A[1] := O; is still detected as a compilation error, but I := 1; A[I]
:= 0; is not. After a program has been fully debugged, the nocheck switch may
be used to reduce the size of the compiled code. Default is check.

Requests that all Pascal-2 extended language features be flagged as errors. Default
is nostandard.

Used in debugging the compiler. Default is “off.”

Prints wall-clock time consumed by the compiler and the compilation rate in lines per
minute. Default is “off.”

Processor Switches

The processor switch defaults to the processor option for the machine on which the compiler is
running. Change the value by specifying one of these four switches on the command line:

fpp

fis

elis

sin

Requests the compiler to generate code for a machine with the Floating Point Processor
(FPP) option. FPP instructions include ADDF, MODF, DIVF, etc. This switch implies the
eis switch and may not be specified at the same time as the £is switch.

Requests the compiler to generate code for a machine with the Floating Instruction
Set (FIS) option. FIS supports only the four basic floating-point instructions and is
available on only a few types of machines. This switch implies the eis switch and may
not be specified at the same time as the £pp switch.

Requests the compiler to generate code for a machine with the Extended Instruction
Set (EIS) option. The EIS processor option includes instructions to perform integer
multiplication and division. Floating-point operations are done with calls to a floating-
point simulator.

Requests code with calls to software routines for integer multiply and divide as well as
for floating-point arithmetic. Should be used only if the target machine does not have
EIS.

2-6

Compller Commands

Embedded Switches

Some characteristics of the compiled code may be controlled by switches included in the source code.
These switches take the form of a Pascal comment beginning with a dollar sign ‘¢’ and followed by
a descriptive name, for example:

{$indexcheck)}

A switch name beginning with “no” reverses the effect of the switch, for example:
{$noindexcheck}

Most switches may be abbreviated to a minimum of three characters, for example:

{$ind} or {$noi}

However, when using $nopointercheck and $noprofile be sure to enter more than three characters,
or the compiler treats the switch as an ordinary comment.

Multiple switches may be embedded within a single comment. The switches must be separated by
commas; only the first may have the dollar sign. The following forms are equivalent:

{$noindex,norange)
{$noindex}{$norange}

Embedded switches are counting switches. Each occurrence increments or decrements the switch
value; the switch is enabled if its value is greater than zero. The initial value of a switch is controlled
by an equivalent compilation switch, such as debug, if the equivalent compilation switch exists. If
no equivalent s i ch is present on the command line, the initial value is determined by the defaults
described below

Once set, some switches are valid for the entire program, as with $§own. In some cases, the “so” form
of the switch is th2 one normally used, as with $§nomain.

Some switches niay be turned “on” and “off” for a particular section of code, either on a statement-
by-statement or n-ocedure-by-procedure basis. The following example shows how debugging may be
turned off for a yrocedure:

{$nodebug} debugging turned off

procedure P;
begin
: body of procedure P
end;

{$dedbug} debugging enabled again

The particulars of each switch are described in the following sections.

[=]

-7

Pascal-2 V2.1 for RSX: System Gulde

Program Optlons

$double Specifies that all real arithmetic is to be done with double precision rather than with
single precision. $doudble applies to the entire compilation. You also must use colon
notation (e.g., E:18:15) to print the double-precision values in a write statement.
This switch must appear in the program before any data of type real is defined or
used. Default is “ofl.”

$pascall
Specifies that external procedures are called in a manner compatible with Pascal-1.
This switch may slow program execution but should simplify conversion of programs
from Pascal-1 to Pascal-2. The default is “off.”

External Pascal-2 procedures may be called regardless of the setting of this switch.

$nomain No main program is expected; only procedures are compiled. This switch is used most
often to compile modules containing only external procedure definitions. If a main
program is found, an error message is generated saying that extra statements have
been found. Default is $main: a main program is being compiled.

$omn Specifies that global-level variables are local to the compilation unit and are shared
only with other external routines that have been compiled with the same program
name and with $own. The $0wn settiing applies to the entire compilation. Default is
“off”: global variables are shared.

$novalkback

Disables the generation of line number and procedure name tables for the procedure-
by -procedure walkback that is displayed on the terminal when a program contains
a run-time error. The procedure walkback is still issued, but addresses are substituted
for line numbers and procedure names in the walkback diagnostics, saving considerable
space. Default is valkback: the tables are generated, and the full walkback in source
terms is displayed after the message header and error message. See “Run-Time Error
Reporting” later in this guide for a discussion of the walkback. The debug com-
pilation switch disables the generation of the error walkback.

Compiler Options

$nodebug, $debug
Disables/enables some of the overhead of the Pascal-2 Debugger. These two switches
have effect only when the debug compilation switch is specified. The debug switch
generates the extra files needed for debugging and sets the $debag switch “on.”
$Nodebug may be used to turn off some of the debugging overhead for procedures
or functions that have already been fully tested. $Debug may be used to restore
debugging for other procedures.

$noprofile, $profile
Disables/enables some of the overhead of the Pascal-2 Profiler. These two switches
have effect only when the prefile compilation switch is specified. The profile switch
generates the extra files needed for profiling and sets $§profile “on.” $Noprofile
may be used to turn off profiling for procedures or functions that do not need to
be profiled, and $profile may be used to restore profiling for other procedures.

2-8

$nolist

$standard

Compller Commands

When the begin statement of a procedure is compiled, the state of the $debug/$nodebug
and $profile/$noprofile switches determine debugging or profiling for that en-
tire procedure. Note that a procedure constitutes the smallest section of code that
can be debugged or profiled; you can’t debug or profile individual lines of a procedure.

The $debug/$nodebug and $profile/$noprofile switches serve the same functions
as far as the code generated. You would never use both sets in the same compilation.
(You can’t debug the program and profile it at the same time.)

Turns off the listing of source lines in the listing file; $11st restores the listing of source
lines. The switch may be turned on or off after each line of source code. The listing file
displays the $nolist/$1ist switches, and the line numbers reflect the lines for which
listing has been disabled. In this program fragment, listing has been disabled on lines
3 through 5:

prograa Ex(output);
{$nolist)
{$11ist)

® NP -

begia

Lines with errors are displayed even if the $nolist switch is on. Default is $11st.

Do not use the $nolist switch during debugging sessions. If you attempt to access any
“unlisted” line(s), the response is the message “No such statement in this procedure.”
Other errors also may be produced.

Like the corresponding compilation switch, $standard causes all extended language
fextures of Pascal-2 to be flagged as compilation errors. By using the embedded
switch at the beginning of the program, you don’t have to use the standard switch
every time you compile the program.

In zddition, if you want to compile the program using language extensions of Pascal-2,
but you want to mark the non-standard features (for later transportability to another
compiler, perhaps), insert the $standard switch at the start of the program, and
enclose any non-standard sections with the switches $nostandard and $standard.
The compiler then checks the rest of the program for non-standard features, so that
you may minimize your use of extensions. The $nostandard switch is a textual flag to
aid any future conversion to a standard program.

The $standard and $nostandard switches may be turned on or off after each line of
source code. Default is $nostandard, which accepts the extended language features of
Pascal-2 as correct forms.

2-9

Pascal-2 V2.1 for RSX: System Guilde

Run-Time Checking Switches

The compilation switch nocheck turns off all run-time checks. The embedded checking switches
cancel the particular checks listed below. Any of these switches may be placed at the start of the
program to turn off a particular kind of check throughout. Or, “on/off” pairings may be used on a
statement-by-statement basis within the program.

Turning off run-time checks reduces the size of the program. However, we recommend that you do
not turn off any checks until the program has been fully debugged.

$noindexcheck
Stops generation of code for array bounds checks; no array index is checked as to
whether it is within the array bounds. Default is $indexcheck.

$nopointercheck
Stops generation of code that checks for ail or invalid pointer values. Default is
$pointercheck.

$norangecheck
Cancels the subrange assignment and case statement check capabilities. No assign-
ment to a variable of subrange type is checked as to whether the assigned value
is within the allowed range. Also, case selectors are not checked for matching labels.
Default is $rangecheck.

$nostackcheck
Stops the generation of code for stack overflow checks on procedure and function
entry. No entry to a procedure or function is checked as to whether adequate stack
space is available for local variables. Note that some procedures call support library
routines that check for stack overflow. Thus, even when compiled with this switch,
some programs may still report “stack overflow” errors. The default is $stackcheck.

2-10

Compilation Examples

Compilation Examples

The following examples show the effects of various switches on the compilation.
Example 1.
>PAS PROG/LIST
Compiles the file PROG.PAS and generates an object file PROG.OBJ and a listing file PROG.LST.

The check switch is assumed to be on, and code is generated for the hardware options of the machine
on which the program is being compiled.

Example 2.
>PAS PROG,PROG=PROG

Equivalent to Example 1.

Example 3.
>RUN_DB1: [100,10]PASCAL
PAS>PROG=PROG/NOCHECK/FIS

Compiles the file PROG.PAS and generates an object file PROG.OBJ. Any errors are listed on the
user’s terminal. No run-time checking code is generated, and code is generated for a CPU with FIS
instructions.

Example 4.
>PAS BEADER,MIDDLE,PROCED/NOMAIN

Concatenates xnd compiles the files HEADER.PAS, MIDDLE.PAS, and PROCED.PAS in the order
given, and geuerates an object file, PROCED.OBJ. This code has no main body and therefore
contains externx: procedures. The check switch is assumed to be on, and code is generated for the
hardware optiou= of the machine on which the program is being compiled.

Example 5.
>PAS ,1I::=PROG

Produces a listing file to the terminal but no PROG.OBJ file.

2-11

Pascal-2 V2.1 for RSX: System Guide

The Task Builder

The Task Builder combines the main program with routines from the Pascal and system libraries to
produce an executable task with extension .TSK. Input to the Task Builder may also include external
modules or libraries, overlay descriptions, and options that control memory and file allocation.

The basic Task Builder command (illustrated with a program called MAIN.PAS) is:
>IKB MAIN/FP/CP=MAIN,LB:[1,1]PASLIB/LD

This command combines the program MAIN.OBJ with the required modules from the Pascal library
and the system library to produce the task image MAIN.TSK. The /FP switch directs the RSX system
to save floating-point context information. The /CP switch designates the task as “checkpointable”;
this means the task may be swapped to a disk as necessary and may be dynamically extended.

To include external modules, you may add their file names to the command line after the main
program:

> b | CP=MAIN :

Libraries of external modules may also be added; they are marked with the /LB switch:
>IXB MAIN/FP/CP=MAIN,SUB1,LIB1/LB,LIB2/LB.LD: [1.1]1PASLIB/LB

You may add a second output file to create a memory map which displays the contents of the task
with the addresses and memory requirements of each component. The map file is created with the
.MAP default extension.

> IN/FP/CP MATE=MAIN,LB:

Task Builder options make more resources available for large tasks. Two options commonly used
with Pascal programs are UNITS and EXTSCT. The UNITS option increases the number of files available
by increasing the logical unit numbers (LUNs). The LUN allocated determine the maximum number
of files which may be open at any time. Six LUNs are allocated by default, two of them for input
and output. When your program uses the Debugger or more than four files, you should allocate
more LUNSs with the UNITS option as shown below.

>IXB

TKB>MAIH/FP/CP=MAIN,LB: [1,1]PASLIB/LB
TKB>/

Enter Options:

TEB>URITS=20

TKB>//

The EXTSCT (Extend Section) option allocates additional memory for a program section. EXTSCT
parameters specify the section name and the number (in octal) of bytes of memory allocated to that
section. This example allocates 4K words to the stack:

>IXB

TKB>¥AIN/FP/CP=MAIN,LB: (1,1]PASLIB/LB
TKB>/

Eater Options:

TXB>EXTSCT=$$HEAP : 20000

IKB>//

The full capabilities of the Task Builder are described in the

Using the Utllities

Using the Utilities

The programmer utility package is a set of procedures and routines designed to enhance the capabilities
of the Pascal-2 compiler.

The Formatter

Suppose you have a program, EFACT.PAS, that calculates an approximation of e, the base of the
natural logarithms, by summing the series

n
1
2 q

—r)
until additional terms do not affect the approximation.

Remember that the compiler accepts a program in whatever format you choose. So the program
may look like this:

program Efact(output);

var E, Delta, Fact: real;

N: integer;

begin

E:=1.0; N:=1; Fact:=1.0; Delta:=1.0;
repeat

E:=E+Delta;

N:=N+1: Fact:=FactsB; Delta:=1/Fact;
until b = (E+Delta);

write(‘¥ith ', n:1, ' terms, ');
writels{‘the value of e is’,E:18:15);
end.

To make the program more readable, you decide to format the program with PASMAT, one of the
Pascal-2 sourc» formatters. Utility routines such as PASMAT can be invoked by either a direct or
indirect commard line. In order to implement indirect commands, you need to create a command
file in the direciory [1,2]. This command file runs the utility program and defines an argument
that allows you to pass input files to the routine. (See the section “Utility Invocation Commands”
in the RSX Installation Guide for details.) In this example give the following direct command:

>RUN_PASMAT
PMT>EFACT

2-13

Pascal-2 V3.1 for RSX: System Guide

The program is reformatted to look like this:
program Efact(output);
var

E, Delta, Fact: real;
H: integer;

:= 1.0;
= 1;
act := 1.0;
Delta := 1.0;
repeat
E := E ¢ Delta;
B:=0-+1;
Fact := Fact s I;
Delta := 1 / Fact;
until E = (E + Delta);
write('With *, n: 1, * terams, ');
writeln('the value of e is', E: 18: 15);
end.

Now proceed to compile the program.

>PAS EFACT

>IKB EFACT/FP/CP = EFACT.LB:[1.11PASLIB/LB
>RUR_EFACT

With 11 terms, the value of e is 2.718282000000000

The Debugger

Even after you have corrected any syntax errors caught by the compiler, the program may still
yield unexpected results. In this situation, Pascal-2's interactive Debugger can help you uncover and
correct the probiems. The Debugger takes control of the program and responds to your commands,
displaying execution information in a Pascal context. With the Debugger, you can watch the progress
of the computation, and you can display intermediate values without making any program changes.
You can then spot the point at which values go awry and correct the error.

To do this, use the debug switch to compile the program with the Debugger. First, compile and
build the program with the commands: '

>IKB the multiline form of the command

Enter Options:
TKB>UBITS=20

The debug compilation produces four cutput files: EFACT.LST, EFACT.SYM, EFACT.SMP, and
EFACT.OBJ. You need the listing file to determine the places to set breakpoints in the program.
Don’t worry about the other three output files, but don't delete them or the listing file. The Debugger
uses all of them.

Using the Utllities

After doing a debug compilation, you may find it handy to have a printout of the listing file. The

file looks like this:

Pascal-2 RSX V2.1D 9-Feb-84 7:08 AM Site #1-1 Page 1-1
Oregon Software, 6915 SW Macadam Ave., Portland, Oregon 97219, (503) 245-2202

EFACT/DEBUG

Line Stat

(o3
[M
C O ® IO OTdWwN -

[
[~]
-

19 ‘'2

program Efact(output);

var
E, Delta, Fact: real;
N: integer;

E := E + Delta;

B:=0+1;

Fact := Fact s §;

Delta := 1 / Fact;
until E = (E + Delta);
write("With *, n: 1, ' terms, ');
writeln('the value of e is', E: 18: 15);

end.

sss En lines with errors detected sss

Two columns >f numbers appear on the left side of each page. The first column, labeled Line,
numbers each iine of the source program. The second column, labeled Stat, gives the statement
number of the first statement on that line. The statement numbers start at 1 for each procedure
or function, increasing by one as each statement is compiled. The Debugger uses these statement
numbers to identify breakpoint locations in the compiled program.

In the program Efact, for instance, you may want to set a breakpoint at statement number 7. This
is the point at which the approximation of @ changes. If the program compiles correctly but produces
unsatisfactory results, you may set the breakpoint at MAI¥,7 to monitor the approximation to e as
the program runs. We'll do just that in the next example.

Notice that the Debugger allows you to set the breakpoints. In this example, you tell the program
to write the value of e at the breakpoint and then continue.

2-15

Pascal-2 V2.1 for RSX: System Guide

>BUN EFACT
Pascal Debugger V3.00 -- 29-Nov-83

Debugging program EFACT

} BOMAIN.7) <W(E):C> at breakpoint, write E and continue
} G start program
Breakpoint 2% MAIN,7 E := E + Delta;
1.0000000E+00

Breakpoint at MAIN,7 E := E ¢ Delta;
2.0000000E+00

Breakpoint at MAIN,7 E := E ¢ Delta;
2.5000000E+00

Breakpoint at MAIN,7 E := E < Delta;
2.6686667E+00

Breakpoint at MAIN,7 E := E ¢ Delta;
2.7083335E+00

Breakpoint at MAIN,7 E := E ¢ Delta;
2.71668869E+00

Breakpoint at MAIN,7 E := E + Dclta;
2.7180557E+00

Breakpoint at MAIN,7 E := E + Delta;
2.7182541E+00

Breakpoint at MAIN,7 E := E + Delta;
2.7182789E+00

Breakpcint at MAIN,7 E := E + Delta;

2.7182817E+00
¥ith 11 terms the value of e is 2.718282000000000

Progran terminated.

Breakpoint at MAIN,12 writeln(’'the value of e is’, E: 18: 16);
}a quit

Double Precision

The computed value in the previous examples is printed with 7 significant digits. You may need
greater precision for some programs. To get extended precision, use the debug switch, which com-
putes to 15 significant digits. The doubleswitch allows you to print a more precise value for e.

>PAS EFACT/DOUBLE

> AC =EFACT,LB:

>RUN_EFACT

With 19 terms, the value of o is 2.718281828459046

The Profiler
Finally, let’s examine the program for efficiency by using the profile switch, which calls in the

Profiler. “Profiling” shows the number of times each statement is executed, giving you the oppor-
tunity to optimize sections of code that are executed many times.

2-16

Using the Utllitles

Compile and task-build the program using the commands:

>PAS EFACT/PROFILE

>IKB the multiline form of the command
TKB>EFACT/FP/CP=EFACT,LB: [1,1]PASLIB/LB

TKB>L |

Enter Options:

TKB>UBITS=20

X8>//

The Profiler takes control of your program and asks for the name of the profile output file. The
default extension is .PRO.

>RUN_EFACT
profile V2.1B 6-Feb-83

Profiling program: EFACT

Profile output file name? EFACT ———— Output goes to default extension
With 11 terms, the valuwe of e is 2.718282000000000

Program terainated.

Profile being generated

The output fil= Incoks like this:

Pascal-5 RSX V2.1D ©-Feb-84 7:08 AM Site #1-1 Page 1-1
Oregoa ‘.{tware, 6915 SW Macadam Ave., Portland, Oregom 97219, (503) 245-2202

EFACT/PROFILE
Line Stat
1 program Efact(output);
2 var
3 E, Delta, Fact: real;
4 N: integer;
5
1 8 1 begin
1 7 2 E :=1.0;
1 8 3 §:=1;
1 9 4 Fact := 1.0;
1 10 5 Delta := 1.0;
10 11 (] repeat
10 12 7 E := E + Delta;
10 13 8 §:=0+1;
10 14 9 Fact := Fact s K;
10 15 10 Delta := 1 / Fact;
16 until E = (E + Delta);
1 17 11 write('With ', n: 1, ' terms ');

1 18 12 writela('the value of e is', e: 18: 15);
19 end.

¢ss Jo lines with errors detected sss

2-17

Pascal-2 V2.1 for RSX: System Guide

PROCEDURE EXECUTION SUMMARY
Procedure name statezents times called statements exacutod
MAIN 12 1 57 100.00%

There are 12 statements in 1 procedures im this program.
57 statements were exscuted during the profile.

The leftmost column of the profile listing shows the number of times each line is cxecuted. The
Profiler listing concludes with a “Procedure Execution Summary” that details each procedure name,
the number of times it is called, the number of statements it contains, and the pumber of statements
it executes. Note, too, that the summary shows the percent of execation count taken by each program
block. (In this example, with cnly one procedure, the portion is 100%.) Given this information, you
can attempt to optimize the procedures and statements that use a disproportionately large part of
the time.

" Index

Style note: Page numbers in boldface (8) indicate the defining use of the term.

A/B E
: eis processor switch, 2-6
z:’[;::l;til::', 2a-c1e4structure, manual embodded awit?hes 4), 3-8
$check switch, 2-9
C $debug switch, 2-8
$doudle switch, 2-7
check compilation switch, 2-6 examples, 2-6
$check embedded switch, 2-9 $indexcheck switch, 2-9
colon notation, 2-5, 2-7 $1ist switch, 2-8
compilation, 3-1 $main switch, 2-7
errors, 2-1, see also error messages $00- reverses effect of <switch>,
examples, 2-1, 2-10 gee <switch>
syntax, 2-4 $own switch, 2-7
compilation switches, 2-3, 3-4 $pascall switch, 2-7
check switch, 2-6 $pointercheck switch, 2-9
debug switch, 2-5, 2-13 $profile switch, 2-8
double switch, 2-5 $rangecheck switch, 2-9
errors switch, 2-3, 2-5 $stackcheck switch, 2-9
list swit-h, 2-3, 2-5 $standard switch, 2-9
macro swiich, 2-5 $valkback switch, 2-8
main switch 2-5 error messages, run-time, 2-2
no- reversc: effect of <switch>, see errors, 2-1
<switch > compilation, 2-1
object switch, 2-5 run-time, 2-2
own switch, 2-5 errors compilation switch, 2-3, 2-4, 2-5
compilation swi* hes, profile switch, 2-5, error walkback, 2-5, 2-8
2-15 executable file, 2-1
standard «witch, 2-6 extended-instruction set, 2-6
test switch, 2-6 extended precision, 2-5
times switch, 2-6 extending program sections, 2-11
walkback switch, 2-5
pascall switch, 2-5 F
D ﬁle, 2-1
executable, 2-1, 2-11
dobug compilation switch, 2-5, 2-13 input, 2-4
$debug embedded switch, 2-8 listing, 2-3, 2-4
Debugger, breakpoints, 2-14 object, 2-1
example, 2-13 output, 2-4
double compilation switch, 2-5 profile, 2-15
$doudle embedded switch, 2-7 source, 2-1
double precision, 2-5, 2-7 statement map, 2-13

colon notation, 2-5, 2-7

Index-1

Index

symbol, 2-13

Task Builder map, 2-11
is processor switch, 2-6
formatter, see PASMAT
£pp processor switch, 2-6

H/I

$$HEAP psect, 2-11

index, see alphabetize

$indexcheck embedded switch, 2-9
input file, 2-4

L

1ist compilation switch, 2-5
example, 2-3
$11st embedded switch, 2-8
listing, 2-3
file, 2-3
page heading, 2-3
listing file, 2-4
logical unit numbers (LUNs), 2-11

M

MACRO assembler command, 2-5
pacro compilation switch, 2-5
main compilaticn switch, 2-5
$main embedded switch, 2-7
manual, index, gee index
manual purpose, v

multiple input files, 2-4

N/O

pil pointer, 2-9
po- reverses effect of <switch>, sce <switch>
object compilation switch, 2-5
object file, 2-1
Oregon Software, v
organization, see manual, index
output specifications, 2-4
colon notation, 2-5, 2-7
owa compilation switch, 2-5
$ovn embedded switch, 2-7

Index-2

P

Pascal, Blaise, 2-1
pascall compilation switch, 2-5
$pascall embedded switch, 2-7
PASCAL command, 2-1
PASMAT, example, 2-12
$pointercheck embedded switch, 2-9
pointers, 2-9
ail values, 2-9
procedure walkback, 2-2, 2-5, 2-8
processor switches, 2-6
eis, 2-6
118, 2-6
fpp, 2-6
sim, 2-6
profile compilation switch, 2-5
example, 2-15
$profile embedded switch, 2-8
profile file, 2-15
Profiler, example, 2-15
program sections (“psects”), extending of,
2-11
purpose of manual, v

R/S

$rangecheck embedded switch, 2-9
run-time errors, 2-2

procedure walkback, 2-2
sim processor switch, 2-6
single precision, 2-7
source, 2-1

file, 2-1

program, 2-1
source program, 3-1
$stackcheck embedded switch, 2-9
standard compilation switch, 2-6
$standard embedded switch, 2-9
statement map file, 2-13
structure, manual, sec organization
style notes, 1-3

switches, 2-4, 2-6, sce also processor switches

compilation, 2-4
compilation examples, 2-10
embedded ($), 2-6
processor, 2-6

symbol file, 2-13

T

Task Builder, 2-11

and external modules, 2-11

and libraries, 2-11

checkpointable tasks, 3-11

EXTSCT option, 2-11

input to, 2-11

memory map, 2-11

typical command, 2-11

UBITS option, 2-11

UNITS option with Debugger, 2-11
test compilation switch, 2-6
times compilation switch, 2-6
traceback, see walkback, procedure

W

walkback, procedure, 2-2, 2-5

walkback compilation switch, 2-5

$valkback embedded switch, 2-8

write statement, double-precision values,
2-5

Index-3

