Pascal-2

Version 2.1 for RSX-11

Oregon

Software

- Pascal-2
Version 2.1 for RSX-11

User Manual

October 1986

OREGON [@ SOFTWARE

157w

ix o

g o

'The software described by this publication is subject to change without notice. Oregon Software assumes

no responsibility for the use or reliability of any of its software that is modified without the prior writtea
consent of Oregon Software.

Oregon Software holds right, title, and interest in the software described herein. The software, or any
copies thereof, may not be made available to or distributed to any person or installation without the written
approval of Oregon Software.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in sub-division

+ (b)(3)(ii) of the Rights in Technical Data and Computer Software clause at 52.227-7013 of the Federal

Acquisitions Regulations (FARs).

Name of Contractor and Address:
Oregon Software, Inc.
6915 S.W. Macadam Avenue
Portland, Oregon 97219
Phone: 503-245-2202

(© 1986 Oregon Software, Inc. ALL RIGHTS RESERVED. Printed in USA, September 1986.

- ISBN'0-92595801-8

v : Pascal-1, Pascal-2 and Oregon Software are trademarks of Oregon Software, Inc.

; DEC, PDP, RSX, RSTS and RT-11 are trademarks of Digital Equipment Corporation. TEX is a trademark
..: of the American Mathematical Society.

Contents

Preface i e e e e e e e e e e et e e e e e e e e e e e e e e e e ix
Pascal-2 V2.1/RSX Introduction ¢ . . . L L e e e e e e e e e xi
Certification ¢ i it ot e xii
Pascal-2 Documentation Package0 e 0. xii
Style Notes v i e e e e e e e e e e e e e e e e e e xiv

For MoreInformation ¢ . ¢ ¢ v v v v v v e e e e e e e e e e e e e Info-1
Pascal- 2 V2.1/RSX UserGuide o ¢ i v v v v v e e i e e e e e 1-1
Getting Started L L L L e e e e e e e e e e e e e e 1-1
Compiling the Program e ¢ s e e e e e e e e . . 1-2
Checking ForErrors e e e e e e e e e e e e 1-3
The Program Listing 0 v . 0 i e e e e e e e e e e e - 1-3
CompilerCommands 0 v 0 e e e e e e e e e e e e 1-4
Compilation Options 0 i e e e e e e e e e e e e e 1-6
Compilation Switches L. L L. e e e e e e e e 1-6
ProgramOptions 0 e e e 1-6

Compiler Options ¢ . i i i e e e e e e e e e e e 1-7
CodeSwitches v v v v v [BV

Checking Switches et e . 1-8
ProcessorSwitches e e e e e e .. 1-8

Embedded Switches s e 1-8
ProgramOptions e e e e e e e e e e . . 1-10

Compiler Options i i e e e e e e e e e e e 1-11

Run-Time Checking Switches v e e e e e s e 1-12
Compilation Examples e e e e .+ 1-13
Building an Executable Task 1-14
Using the Utilities e e e e e 1-16
The Formatter i i e e e e e e e e e 1-16
TheDebugger e e e e e e e e 1-17
TheProfiler e e e e e e e 1-20
Detecting Run-Time Errors 1-22
Errors Detected at Run-Time Voa. . 1-22

Your Next Step & L e e e e e e e e e e e e .. 1222
Pascal-2 V2.1/RSX Programmer’'sReference 2-1
Introduction L L e e e e e e e e e e e e e e e e e ce. 241
I/O Control Switchest e e e e e e e e 2-1
External Modules e e e e e e e e e e e e e e e e e e e 2.7
Calls to Pascal-2 Routines, .. . 2-8
Example Using External Directive 2-9

Calls to Non-Pascal-2 Routines 2-11

Calling MACRO Subroutines Y 23 §]

Calling FORTRAN Subroutines e e e e e e e e e e e e e . 2-12

External Module Libraries00 e e . 2-14
Extended Precision o Teiauy e 2-14
Overlays e e e e e e e e e .. 2-15
Examplesof ODL Files v v v v v v e e e e e e e 2-17
Support Library e e e e e e e e e e e e e e . 2-18
Initializing the Snppon Library e e e e e e e 2-18
Support Library Data Definitions Ve e oo % 2-19
Modifying the Support Library’s Global Variables L. 2-20
Assigning Input and Output to Different LUNs 2-21

Iv

Changing the Support Library'sEventFlag 2-21

The “No-Extend” Patch ¢ ¢ . v i v v v v v v v v v 2-22

The “No-Attach” Patch v . v v v v v v v v v v v 2-22

Setting the Length of the Compiler’s Listing File 2-23
Run-Time Organization ¢ « v v v v v v v v v e e . 2-24
Form of the Generated Code ¢ v v v v v v v .. 2-24

© Memory Organization+ « + ¢ e 4 e e e e e e e e e e e e e e e e 2-26
TheStack v v o e e e e e e e e e e e e e e e e 2-27

The Heap ¢ & v v 0 e et e e e e e e e e e e e e e 2-28
TheStack Frame o ¢ 0 0 v i i e e e e e e e e e e e 2-29
Monitoring Memory Usage 000 2-31
The ‘Space’ Functiono e e e e e e e e e e 2-32
Function ‘P$inew’ and Procedure ‘P8dispose’, 2-38
Example: Fanction ‘NewOK* 2-38
Storage Allocation 0L L L s e e e e e e e e e e e e e 2-43
Run-Time Error Reporting e e e e e e e e e e e e e e e e 2-45
I/OError Trapping « . « . .. s s s s s s s e see s 2-48
Procedure ‘SayEr~ S e e e e e e e e e e 2-51
Customizing Error Reporting 2-52
Error Termination Status i i i e e e e e e e e e 2-57
Implementation Notes L. e e e e e e e e e e e e 2-58
Multiple Source Files e e e e e e e e . 2-58
AccesstoFilesandRecords 00000 0., 2-60
Local Files Closed on Procedure Exit 2-60
Specifying the Location of The Compiler's Work Files 2-60
The Use of ‘SY:' & & o i e e e e e e e e e e e e e e e e 2-61
Variable Initialization L0 L. e e e e e e 2-61
Reading MCR Command Lines 2-62
Executing MCR Commands from PascalPrograms 2-64
Lazy I/O o e e e e e e e e e e e e e e e e 2-69
Terminal I/O o e e e e e e e e e e 2-70
FORTRAN Carriage Control v v v ... 2-71
Single-Character I/O0 2-72
Detaching From The Terminal 2-74
Pascal-2s Use Of LUNs o . v v v v v v v .. 2-74
UsingEvent Flags o .. 2-76
Random Accessto‘Text’ Files 2-77
Procedure ‘GetPos’ e 2-78
Procedure ‘SetPos’ e 2-78
Unsigned Integer Conversion v e e 2-80
Multiuser Taskso e e e e e e e e e e 2-82
Multiple Bufferingo e e e e e e 2-83
Enabling Multiple Buffering On Your System 2-85
Resident and Cluster Libraries 2-86
Creating a Pascal Resident Library 2-86
Including Pascal Procedures in a Resident Library 2-89
Building a Resident Library 2-90

Placing an Existing Procedure in a Resident Library 2-90
Converting an Entire Program to a Shared Procedure 2-95
Compiler Optimizations v v v vt e e e e e e e e 2-98
Variable Assignments to Registers 2-98
Assignment of Constants and Addresses toRegisters 2-98
Comstant Folding ¢ i v v v v v v v v v 2-98
Dead Code Elimination ¢ v v v v v v v e e e e 2-98

Boolean Expression Optimization 2-99

Expression Targeting « « « ¢ ¢ ¢ o v v v e b e e e e . 2-99
Common Subexpression Elimination, 2-99
Common Branch Tail Elimination oo ... 2-99
Array Index Simplification, e e e e e e e 2-100
Appendix A: Compilation Error Messages 2-101
Appendix B: Run-Time ErrorMessages 2-108
Appendix C: Compiler Errors o 0000 0 e s e e e e . 2-113
OverflowErrors+ ¢ . v v v .. e e e e e e .. 2-113
Consistency Checks . . . e e e e e e e e e e e e e e e e e e e .. 2-113
Appendix D: Default File Extennonn e e e e e e e e e e e e e e e e e .. 2-114
Appendix E: Entry Points in the Pascal Snpport Library 2-115
Pascal-2 V2.1/RSX Language Specification A 5 |
Introduction to the Language Specification 3-1
Changes in the Standard e e e e e e e . 3-1
‘For’ Statement Control Vanable. e e e e e e e e e e . 3-1

File Declaration e e e e e e e . 341
Parameter Compatibility e e e e e .. . 3-1
Procedure and Function Parameters 3-2
Conformant Array Parameters e e e e e e e . 33
Literal Strings 3-%
‘Write,’ ‘Writeln’ of ‘Pucked Arrayof Char’ e e e . 3-6
Identifiers . . . e e e e e e e e e e e et e e e . . . 3-8
Alternate Symbol Repmentatnom 37
Implementation Definitions e e e e e e — e e e e e e . 3-8
Standard Type ‘Integer’ - X
Standard Type ‘Real’ G« e e e e v . . . 3-8
Standard Type ‘Char’ O 2.)
Standard Type ‘Text’ T .

‘Set’ Types ¢« i it e e e e e e e e e e e e e e e e e e e .. 3-8
I/O Definitionsttt e e e e e e e ... 39
Syntax Extensions L . .. 0 e e e e e e e e . 310
Identifiers i . e e e e e e e e e e e e e e e e .. 300

ProgramHeading I IS (1
DeclarationOrder - 2 (1]
‘%Include’ Lexical Directive 31
‘%Page’ Lexical Directive O 15 § |

‘External’ and ‘NonPascal’ Directives 311
Structured Constantst e e e e e e e e e 312
Nested Parentheses . . O 1 V'
Standard vs. Structured Constant Declaratxom O I ¥
Multidimensional Arraysof Constants 3-16

Statement Labels . . . < 1 ¢
Default Case Label (* Othervue) B 18 1 £
I/O Support Extensions it e e e e e e e e e e e e e e 3-18
External File Access e e e e e e e I IO X
‘Close’ Procedure e e e e e e e e e e e 3-20
Random Access to Data Fxla (¢ Seek) . e 11}
String Input (‘Read’ and Rgadln) o e s e s s s e s s e e e s e e e 3-21
‘Break’ Procedure e e e e e e e e e e e e e e e e .. 321
OctalOutput - 2 1
Real Number Formattmg e 3-21

Low-LevelInterface i i i i e e e e e e e e e e e e e . 322

Boolean OperatorsonInteger 000 ...
Nondecimal Integer Constants ¢ o o v v v o 0 4 v 0. .
Extended-Range Arithmetic00 0.0 L.
“Origin” Declaration « ¢« ¢ ¢ ¢ v v vt e e e e e e e e
‘Ref’ Function e e e e e e e e e e e e e e e e,
‘Size’ and ‘Bitsize’ Functions 0 . 0 e e e e e e e
‘Loophole’ Function ¢« ¢« ¢« + ¢« v vt bt e e e e e e e e e
Non-Standard Language Elements
Program Parameters 0000000000 L.,
Directives & . o i i e e e e e e e e e e e e e e e e e
‘Mod’ of Negative Numbers e e
Returning of Structured Types
Additional Predefined Functions and Procedures
Procedure ‘Delete’ i L e e e e e e e e e e e e e e
Procedure ‘Rename’ L 0o e e e e e e e e e
Predefined Fanction ‘Time’ 0.,
Procedure ‘TimeStamp’ 0 e e e e e e e
ErrorHandling o i v 0 i e e e e e e e e e e e e e e
DetectedErrors e e e e e e e e e e e e e e
Undetected Errors e e e e e e e e e e ..
Appendix A: Predefined Identifiers 00,
Appendix B: Reserved Words 0 e
Appendix C: Pascal-2Syntax i e e e e e e e e e e e
Pascal-2 Syntax Diagrams e e e e e e e e e e e e
Extended Backus-NawrForm
Pascal-2 Lexical Description 000,
Pascal-2Syntax L . L e e e e e e e e e e e e

Pascal-2 V2.1/RSX Debugger Guide 00w e e
Including the Pascal-2 Debuggerin Your Program
Identifying Pascal Statements
Controlling the Debugger e e e e e
Command Syntax e e e e e e e e e e e e
Exiting and Stopping the Debugger e
Selective Debugging7 e e e e e e e e e e e e
Breakpoint Commands e e e e e e e e e e e e
B, B(): Control Breakpoints e e e e e e e
K, K(): Killing of Breakpoints e e e e e e e e e e e
V, V(): Data Breakpoints (Variables) e e e e e e e e e
Execution Control Commands e e e e e e e e e
G:Go . . L e
C, C(): Continue Execution e e e e e e e e e e
S, S(): Step to Next Statement e e e e e e e e ..
P, P(): Proceed to Next Statement
Tracking Commands i it e e e e e e e e e e
H, H(): History of Program Execution
T(): Execution Trace ¢ . v v v v v v vt e e e
DataCommands i i i v it e e e e e e e
W(): Write Variable Value
Variable Assignment L. oL L0
Informational Commands00 e e e e e e
D: Display Parameters 00000 e e e e e e
L,L(): List Source Lines ¢ . v v v v v v v
Utility Commands v v i et e e e e e e e e e e e e e e

M(): Define Macrot o0 Lo e e e e
X(): ExecuteMacroo 0oL 000 e e e e
Execution Stack Commands00 0w e e .
H, H(): History of Program Execution
N, N(): Names of Variables se e e et e s e s e e e e e e e e e
E(): Enter Stack-Frame Context
Stepping Through a Debugger Sessiom
Debugging External Modules 000000000,
Differences in the Commands00 0. ..
Overlays & i e
Appendix A: Debugser Command Summary0 L0 0 e e e e e
The Pascal-2 Profiler0 e e s e e

Pascal-2 V2.1/RSX Utilities Guide L0000
Introduction to the Utilities Guide
PASMAT: A Pascal-2 Formatter ¢ v v v v v v e e v e e
Overview of Capabilities« ¢« ¢ i e e e e e e e e e e e e

Comments e

Statement Bunching L L L0 Lo s s e e s e e e e e e e

Tables o e
Using PASMAT o 0 o i e e el e e e e e e e e e e e e
Formatting Directives L s e e e e e e e e e e e
Limitationsand Errors L . e e e e e e e e e e
PASMAT Examples 0 0 i e e e e e e e e e e e e e e
XREF: A Pascal-2 Cross-Reference Lister
Using XREF o 0 o o o e e e e e e e e e e e e e e e
Limitations it e e e e e e e e e e e e e e e e e e e ..
PROCREF: Pascal-2 Procedural Cross-Reference Lister
Using PROCREF oo 00 v v oo ..
Limitations . . e
Dynamic String Pachge e
The Procedures and Fanctions 0.
MACRO-11 Procedures With Pascal-2
Design of MACRO-11Procedares
The PASMACMacroPackage
Using PASMAC 0 i i e e e e e e e e e e e e e e e e
Procedure Definition Macros 0000

The ‘Proc’ Macro ¢ ¢ ¢« v v v v e e e e e e e ..

The ‘Func’ Macro & & ¢ i i e e e e e e e e e e e e e e

The ‘Param’Macro « ¢« . .. e e e e e e e

The‘'Var' Macro o .. e e e e e e e

The'Save’Macro ——— s s e e e e s e e

The ‘Rsave’ Macro S ..

The ‘Begin'Macro I

The ‘Endpr’ Macro & . ¢t v v v v o v v e e e e e e e e e e
Type Definitions e e e e et e e e e e e e e e e e
Placing PASMAC into the System MacroLibrary
PROSE: A Text Formatter & « ¢ v ¢ v « v v e v e v e e e e
PROSE Basics it i i e e e e e e e e e e e e e e e e e e
Structure of Directive Lines 0000 .
Placement of Directives 0 0 e e e e e e e e e e e e
Running the PROSEProgramo

HeaderFiles & . i i i e e e e e e e e e e e e e e e

Prepsgess

(S RN, <, B4 BN, BN, BN,]
1

(4]
1

INPUT Directive . . . « ¢ o « o« o o o o o o« o o o e e e e e e e e 5-49

OPTION Directive « ¢ ¢« « « ¢ ¢ ¢ o o« o o« o & e e e e e . . 5-51
Setting Up the Document’s Format e e e e e e e e 5-54
PageFormat e . . B5-54

FORM Directive e e e e e e e e e e e e e e e e e . . 5-54

PageBreaks ¢ . ot it it e e e e e e e e .. 5-56

e 5-56

Paragraphs o000 e e e e e e e e e 5-37

Comments . . . e . . 5.59
Changing Format Wlthm the Text e e e e e e e e e e e e e e e e e e e . . 5-59

Breaking and Skxppmg Lines ¢ ¢« ¢ ¢ i i v v v v v .. 5-60

Keep Buffers e . . 5-61

Reset Directive e e e e e e e e .. 5-62
CreatinganIndex, e e v e e e v .. 5-83
Printing the Document 0000, .+« .. 5-83

Specifying Output Devices 564

Printing Selected Pages and Sectlonn e e e e e e e e e e e e e e e . . 5-65
Appendix A: Summary Directive Table G e e e e e e ... B5-66
Appendix B: Examples of PROSE Directives in Text 5-67
Appendix C: Historical Notes e e e e e « .« .. 5-73

For More Information c v e v e v oo . Info-l
Index e e e e e e e e e e e e e e e e e e . Index-1

vili

Preface

This copy of the Pascal-2 User Maaual for the RSXoperating system
corresponds to Version 2.1E of the Pascal-2 software. This edition
provides users with an up-to-date, technically accurate manual. We've
corrected many technical errors and revised much of the text for clarity.
The next edition will provide further improvements, such as a complete
description of the Pascal language as implemented.

Many changes resulted from user comments, which we continue to en-
courage. For example, users’ feedback helped us clarify our explana-
tions of the role of the taskbuilder and the use of structured constants.
If you wish to contribute the next edition, please fill out and return the
evaluation report provided at the end of this manual, or address your
comments directly to: '

David Spencer, Manager
Technical Publications
Oregon Software

6915 SW Macadam
Portland, Oregon 97219-2397

We appreciate hearing from you.

For our technical publishing, we use TEX, a computer-based typesetting
program developed by Don Knuth at Stanford University. This manual
is typeset in the Computer Modern Roman family of type faces with
the TEX system. Masters were produced at Oregon Software on a
Imprint- 10 laser printer driven by TEX-in-Pascal and our VAX-11/780.
This edition is the last one to be produced on a laser printer. With
the next release, masters for the user manual will be produced on a
phototypesetter.

ix

Pascal-2 V2.1/RSX Introduction

Pascal-2 is an integrated system for software development. At the heart
of the system is a transportable multipass compiler that adheres to the
Pascal standard while performing optimizations to generate compact,
fast code. The Pascal-2 system also offers sophisticated error check-
ing during compilations, extensive error reporting and recovery at run-
time, a Debugger to examine the dynamic state of a running program in
a high-level Pascal context, plus other development utilities. Together,
these components offer the professional programmer a structured and
unified environment in which to design, code, test, maintain, and im-
prove software. Within this environment, more reliable programs may
be produced in less time. Further, programs produced with the Pas-
cal-2 compiler are more portable than those produced with many other

programming packages.

The Pascal-3 Software Development System

Pascal-2 compiler, the support library, the formatters PASMAT and PB, the Debugger and
Profiler, and the cross-references XREF and PROCREF. The text formatter PROSE, and the
installation verifier VERIFY, not shown, are also components of the system. The user creates the
Pascal source program, the included source files, user libraries, and resident libraries. The Text
Editor and Task Builder are supplied by the computer vendor.

xi

Certification

Pascal-2
Documentation
Package

xii

Programs compiled under Pascal-2 are portable and reliable because of
the compiler’s strict implementation of the standard. Also, Pascal-2 is
very consistent from system to system and all Pascal-2 implementations
are consistent with each other. Other compilers may differ according to
the processor and operating system you’re using or may not be available
on larger systems.

For Pascal compilers, certification is relatively new. The Federal Soft-
ware Management Support Center (FSMSC), a private company under
contract with the GSA, tests Pascal compilers according to a validation
process that measures a compiler's performance on a suite of 740 test
programs. The tests subject the vendor's claims to comparison with
the published standard. FSMSC testing guarantees that the software
meets ANSI (American National Standards Institute) standards and
FIPS (Federal Information Processing Society) requirements. FSMSC
certification is required for any compiler purchased by an agency of the
federal government.

This version of the Pascal-2 compiler has been certified by the British
Standards Institution (BSI) and the FSMSC for compliance with ISO
Standard 7185, Level 1. During the certification process, Oregon Soft-
ware submitted the compiler to a test program which automatically
generates a report on the software’s performance. The release notes
contain a copy of this report.

The Pascal-2 user documentation contains information on the use of
the Pascal-2 compiler and related utilities on Digital's RSX operat-
ing systems: RSX-11M, RSX-11M-Plus, IAS, and VAX/VMS-AME.
In general, we assume that readers of the manual are programmers
familiar with Pascal and the RSX operating system. Some sections
assume a detailed working knowledge of the language.

The manual consists of five major guides, as follows:

o The User Guide serves as a quick overview of the Pascal-2 system,
to give you a feel for how it works. Written for new users, the
guide takes you through the basic steps of compiling, correcting,
and running a Pascal-2 program. The User Guide also provides
brief explanations and examples of some of the standard features
and utilities of the Pascal-2 system.

o The Programmer Reference contains detailed descriptions of com-
pilation commands, embedded and low-level switches, and the low-
level interface between Pascal-2 and the operating system. The
Programmer Reference also contains a miscellany of information
on implementation-related problems, divided into two broad cat-
egories: error recovery and implementation notes. Finally, the
reference describes Pascal-2's optimizations and provides helpful
hints as to the cause of compile-time and run-time errors and ways
to fix the errors.

o The Language Specification describes Pascal-2's e features
in detail. Since the second edition of Jensen and Wirth's User
Manual and Report in 1978, the language has undergone major
changes, which are incorporated in the international Pascal stan-
dard, ISO 7185. Because not everyone is familiar with that doc-
ument, the Language Specification begins by summarizing those
changes and describing the ways that Pascal-2 implements them.
Thus, the guide serves not only as a description of our Pascal prod-
uct but also as a review of the language’s evolution since 1978.

o The Debugger and Profiler Guide describes two programs designed
to alleviate tedious aspects of programming and to improve the
usefulness of the Pascal-2 system. The Debugger helps find and
correct errors that cannot be caught at compile time. The execu-
tion Profiler shows less efficient areas of the program in terms of
the number of statements executed.

o The Utilities Guide describes each of the following packages: pro-
gram formatters, a text formatter, cross-reference programs, a
package that helps interface assembler routines with Pascal-2 pro-
grams, and a dynamic string package. Each utility is described in
detail, with examples.

A set of system-specific release notes accompanies each shipment of
the software. These release notes contain installation procedures and
inform the user of software bugs and documentation errors. The release
notes should be kept with the Pascal-2 User Manual for reference.

The Pascal-2 User Manual is not intended to be a Pascal textbook.
Beginners can make their way carefully through this manual, but we
refer you to the reading list in the appendix, “For More Information.”

For information on the RSX system, see these RSX manuals: Intro-
duction to RSX, MCR Operations, I/O Operations Reference Manual,
Task Builder, Executive Reference.

In addition, Pascal-1 customers upgrading to Pascal-2 should refer
to the Pascal-2 Conversion Guide and the CONVRS utility, which
are available from Oregon Software. The Conversion Guide explains
specific language differences between Pascal-1 and Pascal-2 and the
practical programming problems created by the differences. The guide
describes the use of the CONVRS utility to help isolate areas in a Pas-
cal-1 program that will have to be modified to convert to Pascal-2;
the guide then details the steps required to convert the programs. The
Conversion Guide concludes with a list of solutions to errors that you
may encounter while completing the conversion to Pascal-2.

xili

Style Notes The Pascal-2 User Manual follows these style conventions:

Text: Pascal reserved words, predefined symbols, switches and
compiler directives are in boldface typewriter type: begis,
write, ¥include, acmain. Portions of examples referred to
in text are in boldface typewriter type. System directives are
in upper-case boldface typewriter type: WAITFR, SPAVE. Pro-
gram and system names are in upper case: ROTAT, RSX.

Program Examples: Commands that you should type are in under-
lined boldface typewriter: RUN EX. These commands as-
sume a carriage return at the end.

Program Listings: The Pascal-2 compiler accepts any combination of
upper-case and lower-case characters. Examples in this man-
ual have Pascal words in lower case and have user-defined
words with an initial capital letter and other capitalization as
needed for readability, as shown in this program segment:

procedure Show;
begin
SomeUseriction;
writeln(Result);
end;

Single quotes ('..') in examples and in text appear as “..".

Terminology: We use standard terms as they are used in documents
describing the RSX operating system.

xiv

[

Pascal-2 V2.1/RSX User Guide

Getting Started

" This introductory section gives you a tutorial overview of Pascal-2's

features. The User Guide explains how to compile and run Pascal-2
programs, how to interpret program listings and error messages, and
how to use some of the utility programs. This section also provides a
complete list of switches used to control the compilation process.

This guide assumes that you are familiar with: simple RSX commands,
a text editor (e.g., EDIT, TECO, EDT, SOS), and elementary Pascal
programming.

This section does not provide:

¢ An introduction to Pascal (see Programming in Pascal by Peter
Grogono);

o A detailed description of Pascal-2 (see the Language Specification,
and Doug Cooper's Standard Pascal User Reference Manual);

e An expert’s guide to Pascal-2 (see the Programmer Reference).

The first step in running a Pascal program is to enter the program
into the computer and store it in the file system. Use a familiar text
editor to enter the program; store it in a file with the file type .PAS.
The Pascal-2 compiler accepts free-format program files, so use blanks,
tabs, new lines, and form feeds as desired to help make the program
readable.

This Pascal version of a program is called the source program, or the

source file. All other versions of the program are translations from the
source program.

1-1

Compiling the
Program

After editing, you must compile your program—translate it into a form
that the computer can execute. The Pascal-2 compilation process is
directed by the PAS system task. The PAS command causes the Pascal-2
compiler to produce an .OBJ object file. The Task Builder combines
the object file with the Pascal-2 library to produce an executable task
image. With a source file called TEST.PAS, the entire compilation
process follows this example:

>PAS TEST
>TKB TEST/FP/CP = TEST,LB:(1,1]PASLIB/LB

As the example shows, the .PAS, .TSK, and .OBJ extensions may be
omitted from the file names on commands to the Pascal-2 compiler
and the Task Builder. These extensions must, however, be included in
commands to other RSX system programs such as the editor.

This example shows how you may compile a single program. Subse-
quent examples show batch mode and command-file compilations.

Notice, too, the /FP and /CP switches in the Task Builder command.
The /FP switch enables the saving of floating-point context, and the /CP
switch enables checkpointing. We strongly recommend these switches
for Pascal tasks. See the “Compilation Options” for a complete list of
switches.

To illustrate the compilation process, let’s say that the program

program First (output);

begin
write (’"Things are best im their begimmimgs"’);
writela (’ -- Blaise Pascal’);

end.

is stored in the file FIRST.PAS.

Compilation proceeds as follows:

>PAS FIRST

>TKB FIRST/FP/CP = FIAST,LB:[1,1]PASLIB/LB

>RUN FIRST

"Things are best ia their begimmnings" -- Blaise Pascal

Notice that no errors were detected. The next example shows what
happens if detectable errors are present in the source program.

CheCklng F of Effor S The Pascal-2 compiler detects nearly 150 types of “grammatical” errors
in a program: errors in syntax such as missing semicolons, undefined
identifiers, missing begin and end reserved words, and similar mistakes.
As an example, the following program contains a deliberate error: a
semicolon is missing between the program heading and the reserved
word begia.

program Secoad (output)
begin

writelns (’Things get worse as they coatimue’);
end.

Semicolon errors (the most common errors made by beginning Pascal
programmers) are always detected by the compiler:

Example: Syntax Error Message on Screen]
>PAS SECOND

Pascal-2 RSX V2.1E 9-Feb-88 7:06 AN Site #1-1 Page 1-1 Oregoa Software, 6915
SV Hacadam Ave., Portland, Oregoa 97219, (503) 245-2202 SECOND

1 program Secoad (output)
‘19
ss¢ 19: Use ’;’ to separate statements

¢se There was 1 line witk errors detected ees
?Errors detected: 1

For each detected error, a line of the source program is printed, then an
arrow indicating the approximate position of the error, then a message
describing the error. (The number “19” is the error message number
generated by the compiler.) See Appendix A of the Programmer Ref-
erence for a complete list of detectable compilation errors.

The Pfog’am Llst"‘g Many times, to correct an error, you need to see more of the program
than just the line on which the error appears. The Pascal-2 compiler
can be directed to display the entire program, with all detected errors
and other information. This is the “listing” of the program.

To obtain a listing file (.LST), include the 1ist switch in the compila-
tion command line:

>PAS SECOND/LIST

1-3

To get a program listing at a terminal, specify TI: as the listing file,
as shown below. The listing also may be writtea to the line printer or
a disk file.

Example: Program Listing With Compilation Error Message]

>PAS THIRD,TI:= THIRD/LIST

Pascal-2 18X V2.1E 9-Fed-86

7:06 AN Site #1-1 Page 1-1 Oregon Software, 6915

SV Hacadam Ave., Portland, Oregon 97219, (503) 245-2202 THIRD,TI: = THIRD/LIST

1 progzam Third (output)
“19
s¢¢ 19: Use ’;’ to separate statemeats
2 begia
3 writela (’Love or hate alters the aspect of justice’);
4 end.

seeThere wvas 1 line with errors detected eee

Compiler Commands

1-4

The listing is printed in pages, with a heading on each page showing the
program name, the exact version of the Pascal-2 compiler, the date and
time, and the licensed user identification. The listing also prints out,
in the left-hand column, the line number for each line of the program.
You also may use the exrors switch to create a listing file containing
only the lines with detected errors.

As illustrated in the example of 1ist, a compilation switch modifies
the compilation process in some way. A switch is signified by a slash
and a descriptive name. All of the compilation switches are explained
in the “Compilation Options” section of this guide.

All Pascal-2 compilation commands are divided into three parts: the
compiler invocation command, the file specifications, and the compila-
tion switches.

The compilation syntax for Pascal-2 is this:

>PAS output-file, listing-file=input-files/switches

The PAS invocation (or some other name that your system manager
has chosen for the invocation command) must always come first; it may
be written in any combination of upper-case or lower-case characters.
PAS may be followed on the same line by the rest of the compilation
specification or entered on a line by itself. In the latter case, the PAS>
prompt appears for the file specifications and compilation switches.

input-files: The only required file specification is at least one input
file. Multiple input files are concatenated in order, from left
to right, so that a large program can be split into separate files

or so that a common set of definitions can be placed in a con-
figuration file. With “source concatenation” no input file can
contain a program statement, except for the first file listed.
If no output specification is given, the output is determined
by the compilation switches; the file name is taken from the
last input file specified; and the output files will be placed in
the default directory. The default input file extension is .PAS.
Multiple input files are separated by a comma.

output-fil: The output file specifies the name of the object output,
with a default extension of .OBJ. If the macro compilation
switch is specified, the output file contains MACRO-11 code
and the default extension is .MAC.

listing-file: The listing file specifies the file to receive the compilation
or error listing. The default listing file extension is .LST.

If an equal sign appears on the command line, but no file
name is listed in the position of the output file, no outpat file
is generated. If no file name is listed in the position of the
listing file, a listing output is produced only if errors exist;
if errors exist, output is sent to the user's terminal with the
errors switch assumed.

switches: Program compilation is affected in some way by one or more
of the options described in the next section. Examples in this
manual show the compilation switches after the last file spec-
ification, but switches may appear after any file specification
and wherever they’re placed, they apply to the entire compi-
lation. Multiple switches are separated by slashes.

You can also run the compiler directly, responding to the prompt as
shown here:

>RUF [1,54]PASCAL
PAS> ————— prompts for the rest of the command line

1-5

Compilation Options

Compilation Switches

Program Options

1-6

The Pascal-2 compiler provides you with a number of options, which
are implemented by switches entered on the command line or embedded
in the code itself. Switches may be used to change the compiler'’s
characteristics or to include a utility program.

Compilation switches provide control over the files generated and over
some aspects of the generated code. A switch is signified by a descrip-
tive name (e.g., check). A switch name beginning with a0 reverses the
effect of the switch (e.g., aocheck). A switch name may be abbrevi-
ated as long as the shortened form is sufficient to identify the switch.
Three characters of the switch name (excluding the no) always identify
a Pascal-2 compilation switch (e.g., che, a0che; mac, nomac).

Some switches, such as object and macro, are incompatible, causing
the error message “conflicting switches specified” if used in the same
compilation.

Pascal-2 compilation switches are:

doudle Specifies that all real arithmetic is to be done with double-
precision rather than with single-precision. All real variables
are in 8-byte floating-point format. You must use colon no-
tation (e.g., E:18:15) within the program to obtain double-
precision values in the write statement. Default is “off”: with
real variables are in 4-byte format. See “Extended Precision”
in the Programmer’s Reference for more details.

pascall Specifies that the interface with external procedures is com-
patible with Pascal-1. This interface is less efficient than
Pascal-2's and may slow program execution. The pascali
switch simplifies the conversion of programs from Pascal-1 to
Pascal-2 and should be used only when required. Default is
the Pascal-2 interface.

nomain No main program is expected; only procedures are compiled.
This switch is used most often to compile modules contain-
ing only external procedure definitions. If a main program is
found, an error message is generated saying that extra state-
ments have been found. Default is main: a main program is
being compiled.

owa Specifies that global-level variables are local to the compila-
tion unit and are shared only with other external routines
that have been compiled with the same program name and
with own. Default is “off”: global variables are shared. With
this switch, you can distinguish between “public global” and
“private global” variables.

Compiler Options

Code Switches

aovalkback Disables the generation of line number and procedure

exXrors

list

dedug

protfile

object

Bacro

name tables for the procedure-by-procedure walkback that is
displayed on the terminal when a program contains a run-
time error. The run-time message header and error message
are printed but not the walkback. The debug switch disables
the generation of the walkback. Default is walkback: the
tables are generated, and the full walkback in source terms is
displayed after the run-time error message. See “Run-Time
Error Reporting” later in this section for a discussion of the
error walkback. The walkback switch in external modules
maust be set to match those of the main program segment.

Requests that the listing file contain only lines with errors. By
default, this “errors only” listing is printed on the terminal
You can direct the listing to a disk file by providing a listing-
file specification on the command line. The errors switch is
incompatible with the 1ist switch. It also has no effect when
used with the debug switch or the protile switch, because
both of these switches always generate a listing file.

Requests a full source listing in the listing file. If a listing file
is specified, 1ist is assumed unless you specify the errors
switch. If no listing file is specified, 1ist directs outpat to a
listing file with the same name as the first input file and the
appropriate extension.

Requests generation of code and auxiliary files to interface
with the Pascal-2 Debugger. Default is “off.” The debug
switch disables the generation of the walkback and affects
some optimizations (see “Compiler Optimizations”). This
switch cannot be used with the profile switch or the er-
rors switch.

Requests an execution profile when the program is run. De-
fault is “off.” The switch cannot be used with the debug
switch or the exrors switch.

Generates an object format output file with default extension
.OBJ. Default is normally “on”; object code is generated. The
switch is “off” when noobject is specified or when no output
file is provided on the command line. The switch cannot be
used with the macro switch.

Generates MACRO-11 code in the output file. This code may
be assembled by the HACRO assembler command to produce
an object file. When macro is specified, object is set “off”
and the default extension for the output file becomes .MAC.
Default of macro is “off.” The macro switch cannot be used
with the object switch.

1-7

Checking Switches

Processor Switches

Embedded Switches

1-8

nocheck Disables all run-time checks, including index range checks,
subrange assignment checks, pointer checks, stack checks, case
label checks, and divide-by-zero checks. Note that compilation
errors are still detected. Thus, if nocheck is specified, var
A:array [2..10] of integer; A[1] := O; is still detected
as a compilation error, but I := 1; A[I] := 0; is not. After
a program has been fully debugged, the nocheck switch may
be used to reduce the size of the compiled code. Default is
check.

standard Requests that all Pascal-2 extended language features be
flagged as errors. Default is nostandard.

times Prints wall-clock time consumed by the compiler and the com-
pilation rate im lines per minute. Default is “off.”

The processor switch defaults to the processor option for the machine
on which the compiler is running. Change the value by specifying one
of these four switches on the command line:

pp Requests the compiler to generate code for a machine with
the Floating Point Processor (FPP) option. FPP imstructions
include ADDF, NODF, DIVF, etc. This switch implies the eis
switch and may not be specified at the same time as the fis
switch.

tis Requests the compiler to generate code for a machine with the
Floating Instruction Set (FIS) option. FIS supports only the
four basic floating-point instructions and is available on only
a few types of machines. This switch implies the eis switch
and may not be specified at the same time as the £pp switch.

eis Requests the compiler to generate code for a machine with
the Extended Instruction Set (EIS) option. The EIS processor
option includes instructions to perform integer multiplication
and division. Floating-point operations are done with calls to
a floating-point simulator.

sim Requests code with calls to software routines for integer multi-
ply and divide as well as for floating-point arithmetic. Should
be used only if the target machine does not have EIS.

Some characteristics of the compiled code may be controlled by switches
included in the source code. These switches take the form of a Pascal
comment beginning with a dollar sign ‘¢’ and followed by a descriptive
name, for example:

{$indexcheck}

A switch name beginning with “no” reverses the effect of the switch,
for example:

{$noindexcheck}

Most switches may be abbreviated to 8 minimum of three characters,
for example:

{$ind} or {$moi}

However, when using $aopointercheck and $aoprofile be sure to
enter more than three characters, or the compiler treats the switch as

an ordinary comment.

Multiple switches may be embedded within a single comment. The
switches must be separated by commas; only the first may have the
dollar sign. The following forms are equivalent:

{$noindex,norange}
{$noindex}{$norange}

Embedded switches are counting switches. Each occurrence increments
or decrements the switch value; the switch is enabled if its value is
greater than zero. The initial value of a switch is controlled by an
equivalent compilation switch, such as debug, if the equivalent compi-
lation switch exists. If no equivalent switch is present on the command
line, the initial value is determined by the defaults described below.

Once set, some switches are valid for the entire program, as with $owa.
In some cases, the “no” form of the switch is the one normally used, as
with $aomain.

Some switches may be turned “on” and “off” for a particular section
of code, either on a statement-by-statement or procedure-by-procedure
basis. The following example shows how debugging may be turned off
for a procedure:

{$nodebug} debugging turned off

'~ procedure P;
begia
body of procedure P
end;

{$dedug} debugging enabled again

The compiler does not limit to-the number of command-line switches
you may use. When using embedded switches, you may have up to
ten pairs of $1ist...$nolist switches and up to twenty-five “on...off”
settings for other embedded switches.

The particulars of each switch are described in the following sections.

1-9

Program Options

1-10

$double

Specifies that all real arithmetic is to be done with double-
precision rather than with single-precision. All real variables
are in 8-byte floating-point format. $double applies to the en-
tire compilation. You must use colon notation (e.g., B:18:16)
to print the double-precision values in a write statement.
This switch must appear in the program before any data of
type real is defined or used. Default is “off”; with real vari-
ables in 4-byte format. See “Extended Precision” in the Pro-
grammer’s Reference for more details.

$pascall Specifies that the interface with external procedures is com-

patible with Pascal-1. This interface is less efficient than that
of Pascal-2, and may slow program execution, but should sim-
plify conversion of programs from Pascal-1 to Pascal-2. The
default is “off”; giving the Pascal-2 interface.

External Pascal-2 procedures may be called regardless of the
setting of this switch.

$aomain No main program is expected; only procedures are compiled.

This switch is used most often to compile modules contain-
ing only external procedure definitions. If a main program is
found, an error message is generated saying that extra state-
ments have been found. Default is $main: a main program is
being compiled.

Specifies that global-level variables are local to the compila-
tion unit and are shared only with other external routines
that have been compiled with the same program name and
with $own. The $owa setting applies to the entire compila-
tion unit. Default is “off”: global variables are shared. With
this switch, you can distinguish between “public global” and
“private global” variables.

$nowalkdack Disables the generation of line number and procedure

name tables for the procedure-by-procedure walkback that is
displayed on the terminal when a program contains a run-
time error. The run-time message header and error message
are printed but not the walkback. The debug switch disables
the generation of the walkback. Default is walkback: the
tables are generated, and the full walkback in source terms is
displayed after the run-time error message. See “Run-Time
Error Reporting” later in this section for a discussion of the
walkback. The walkback switch in external modules must be
set to match those of the main program segment.

Compiler Optioas

$acdebug, $dedug Disables/enables some of the overhead of the Pas-

cal-2 Debugger. These two switches have effect only when
the debug compilation switch is specified. The debug switch
generates the extra files needed for debugging and sets the
$debug switch “on.” $Sodebug may be used to turn off some
of the debugging overhead for procedures or functions that
have already been fully tested. $Debug may be used to re-
store debugging for other procedures. The walkback switch
in external modules must be set to match those of the main

program segment.

$aoprofile, $profile Disables/enables some of the overhead of the

$a0list

Pascal-2 Profiler. These two switches have effect only when
the profile compilation switch is specified. The profile
switch generates the extra files needed for profiling and sets
$profile “on.” $Noprofile may be used to turn off profiling
for procedures or functions that do not need to be profiled,
and $profile may be used to restore profiling for other pro-
cedures.

When the begin statement of a procedure is compiled, the
state of the $dedug/$nodedug and $profile/$moprofile
switches determine debugging or profiling for that entire pro-
cedure. Note that a procedure constitutes the smallest section
of code that can be debugged or profiled; you can’t debug or
profile individual lines of a procedure.

The $dedug/$nodedug and $profile/$noprofile switches
serve the same functions as far as the code generated. You
would never use both sets in the same compilation. (You can’t
debug the program and profile it at the same time.)

Turns off the listing of source lines in the listing file; $1ist
restores the listing of source lines. The switch may be turned
on or off after each line of source code. You may have up to
ten $1ist -- $nolist-switch pairs. The listing file displays
the $n0list/$1ist switches, and the line numbers reflect the
lines for which listing has been disabled. In this program
fragment, listing has been disabled on lines 3 through 5:

program Ex(output);
{$nolist}
{$1ist}

begia

DO NN -

Lines with errors are displayed even if the $a0list switch is
on. Default is $1ist.

Do not use the $nolist switch during debugging sessions. If
you attempt to access any “unlisted” line(s), the response is
the message “No sach statement in this procedure.” Other
errors also may be produced.

1-11

Run-Time Checking
Switches

1-12

$standard Like the corresponding compilation switch, $stamdard
causes all extended language features of Pascal-2 to be flagged
as compilation errors. By using the embedded switch at the
beginning of the program, you don’t have to use the standard
switch every time you compile the program.

In addition, if you want to compile the program using lan-
guage extensions of Pascal-2, but you want to mark the non-
standard features (for later transportability to another com-
piler, perhaps), insert the $standard switch at the start of
the program, and enclose any non-standard sections with the
switches $nostandard and $standard. The compiler then
checks the rest of the program for non-standard features, so
that you may minimize your use of extensions. The $nostan-
dard switch is a textual flag to aid any fature conversion to a
standard program.

The $standard and $nostandard switches may be turned on
or off after each line of source code. Default is $nostandard,
which accepts the extended language features of Pascal-2 as
correct forms.

The compilation switch nocheck turns off all run-time checks. There
is no embedded $aocheck switch. The embedded checking switches
cancel the particular checks listed below. Any of these switches may
be placed at the start of the program to turn off a particular kind of
check throughout. Or, “on/off” pairings may be used on a statement-
by-statement basis within the program.

Turning off run-time checks reduces the size of the program. However,
we recommend that you do not turn off any checks until the program
has been fully debugged.

$nocheck Turns off all run-time checks.

$noindexcheck Stops generation of code for array bounds checks; no
array index is checked as to whether it is within the array
bounds. Default is $indexcheck.

$aopointercheck Stops generation of code that checks for ail or
invalid pointer values. Default is $pointercheck.

$norangecheck Cancels the subrange assignment and case statement
check capabilities. No assignment to a variable of subrange
type is checked as to whether the assigned value is within
the allowed range. Also, case selectors are not checked for
matching labels. Default is $rangecheck.

$nostackcheck Stops the generation of code for stack overflow checks
on procedure and function entry. No entry to a procedure
or function is checked as to whether adequate stack space is
available for local variables. Note that some procedures call
" support library routines that check for stack overflow. Thus,
even when compiled with this switch, some programs may still

report “stack overflow” errors. The default is $stackcheck.

Compilation Examples

Example 1

Example 2

Example 3

Example 4

Example 5

The following examples show the effects of various switches on the
compilation.

>PAS_PROG/LIST

Compiles the file PROG.PAS and generates an object file PROG.OBJ
and a listing file PROG.LST. The check switch is assumed to be on,
and code is generated for the hardware options of the machine on which
the program is being compiled.

>PAS PROG,PROG=PROG

Equivalent to Example 1.

>RUS DB1:[100,10]PASCAL
PAS>PR0G=PROG/NOCHECK/FIS

Compiles the file PROG.PAS and generates an object file PROG.OBJ.
Any errors are listed on the user’s terminal. No run-time checking code
is generated, and code is generated for a CPU with FIS instructions.

>PAS HEADER,NIDDLE,PROCED/SONAIN

Concatenates and compiles the files HEADER.PAS, MIDDLE.PAS,
and PROCED.PAS in the order given, and generates an object file,
PROCED.OBJ. This code has no main body and therefore contains
external procedures. The check switch is assumed to be on, and code
is generated for the hardware options of the machine on which the
program is being compiled.

>PAS ,TI:=PR0G

Produces a listing file to the terminal but no PROG.OBJ file.

1-13

Blli'ding an Executable The Task Builder combines the main program with library routines

Task

1-14

from the Pascal and system libraries to produce an executable task
(.TSK) image. Input to the Task Builder may also include external

modules or libraries, overlay descriptions, and options that control
memory and file allocation.

The basic Task Builder command (illustrated with a program called
MAIN.PAS) is:

>TXB HAIB/FP/CP=NAIN,LB:[1,1]PASLIB/LB

This command combines the program MAIN.OBJ with the required
modules from the Pascal library LB: [1,1]PASLIB.OLB and the sys-
tem library LB:([1,1]SYSLIB.OLB, and produces the task image
MAIN.TSK. The /FP switch directs the RSX system to save floating-
point context information. The /CP switch designates the task as
“checkpointable”; this means the task may be swapped to disk as nec-
essary, and also that the task may be dynamically extended. The /FP
and /CP switches are recommended for all Pascal tasks.

To include external modules, add the file names to the command line
after the main program:

>TKB MAIN/FP/CP=NAIN,SUB1,SUB2,LB:(1,1]PASLIB/LB

Libraries of external modules may be included in a similiar fashion, but
are marked with the /LB switch:

>TXB MAIN/FP/CP=NAIN,SUB1,LIB1/LB,LIB2/LB,LB:[1,1]PASLIB/LB

To produce a memory map which displays the contents of the task
with the addresses and memory requirements of each component, add
a second output file to the Task Builder command. The map file is
created with the .MAP default extension.

>TEB MAIN/FP/CP,NAIN=NAIN,LB:[1,1]PASLIB/LB

Two Task Builder options commonly used with Pascal programs are
UNITS and EXTSCT. These (and all) Task Builder options require the use
of the multiline form of the TkB command, shown in the next example.
The UBITS option increases the number of logical unit numbers (LUNs)
available to the program. The number of LUNs available determines
the maximum number of files which may be open at any time. Two
LUNs (5 and 6) are always used by Pascal for the standard files input
and output. There are 6 LUNSs allocated by default, so a program using
four or more files should allocate more LUNs with the UBITS option as
follows.

(Additional UNITS cause a minimal increase in task size, s0 we recom-
mend a large number, 20.)

>TIB
TEB>NAIN/FP/CP=HAIN,LB: [1,1]PASLIB/LB
TKB>/

Eater Optioas:

TEB>UNITS=20

8>//

If used, the Debugger requires five LUNs for operation, so you must
always increase the UNITS when you are using the Debugger with your
program. See the Debugger Guide for details. LUNs are described in
“Pascal-2's Use of LUNs” later in this guide.

The EXTSCT (Extend Section) option allocates additional memory for a
program section. Pascal-2 uses the section named $$EEAP for the stack
and local variables; if dynamic expansion is not available, the $$HEAP
section is used for all buffers and the heap as well. The EXTSCT option
parameters specify the section name and the number (in octal) of bytes
of memory to allocate to that section. This example allocates 4K words
to the stack: :

>TIB
TEB>NAIN/FP/CP=NAIN,LB: [1,1]PASLIB/LB
X8>/

Enter Optionms:

TKB>EXTSCT=$$HEAP : 20000

TXB>//

The full capabilities of the Task Builder are described in the RSX-
11M/M-PLUS Task Builder Reference Manual See also the “Over-
lays” and “Monitoring Memory Usage” sections of the Programmer’s
Reference.

1-15

Using the Utilities

The Formatter

1-16

.

The programmer utility package contains a set of procedures and rou-
tines that enhance the capabilities of the Pascal-2 compiler. This sub-
section shows sample uses of three utilities: PASMAT formatter, the
Debugger, and the Profiler. All utilities are fully explained in Sections
4 and 5 of this manual

Suppose you have a program, EFACT.PAS, that calculates an approx-
imation of e, the base of the natural logarithms, by summing the series

s

=0
until additional terms do not affect the approximation.

Remember that the compiler accepts a program in whatever format
you choose. So the program may look like this:

program Efact(output);

var E, Delta, Fact: real;

§: integer;

begia

E:=1.0; §:=1; Fact:=1.0; Delta:=1.0;
repeat

E:=E+Delta;

B:=0+1; Fact:sFactel; Delta:=1/Fact;
until E = (E+Delta);

write(’With ’, n:1, ’ terms, ’);
writeln(’the value of ¢ is’,E:18:15);
end.

The Debugger

To make the program more readable, you decide to format the program
with PASMAT, one of the Pascal-2 utility programs. Give the following

command:

>IU8_PASKAT
PET>EFACT

and the program is reformatted to look like this:

program Efact(output);

var
E, Delta, Fact: real;
§: integer;
begia
E := 1.0;
§:=1;
Fact := 1.0;
Delta := 1.0;
repeat
E := E 4+ Delta;
§:=§ +1;

Fact := Fact ¢ I;
Delta := 1 / Fact;
until E = (E + Delta);
write(’With ’, n:1, ? terms, ’);
vriteln(’the value of ¢ is?,E:18:15);
end.

(PASMAT has many other formatting options. See the Utilities Guide
for details.) Now proceed to compile the program.

>PAS EFACT

>TXB EFACT/FP/CP = EFACT,LB:[1,1]PASLIB/LB

>RUB EFACT

Uitk 11 terms, the value of ¢ is 2.718282000000000

Even after you have corrected any syntax errors caught by the com-
piler, the program may still yield unexpected results. In this situation,
Pascal-2's interactive Debugger can help uncover and correct the prob-
lems. The Debugger takes control of the program and responds to your
commands, displaying execution information in a Pascal context. With
the Debugger, you can watch the progress of the computation, and you
can display intermediate values without making any program changes.
You can then spot the point at which values go awry and correct the
error.

To do this, use the debug switch to compile the program with the
Debugger. You then build the task using the multiline form of the
TXB command to increase the number of logical units available to the
program. The support library and Debugger open seven files, so you
need at least 7 logical units to run Efact and the Debugger. (The

1-17

system default is 6.) Although 7 would suffice, we recommend that you
use a larger number than you need, 20 in most cases.

First, compile and task-build the program with the commands:

>PAS EFACT/DEBUG

>TIB the multiline form of the command
TXB>EFACT/FP/CP=EFACT,LB: [1,1)PASLIB/LB

TEB>/

Eater Optioas:

TEB>UNITS=20

TEB>//

The debug compilation produces four output files: EFACT.LST,
EFACT.SYM, EFACT.SMP, and EFACT.OBJ. You need the listing
file to determine the places to set breakpoints in the program. Don't
worry about the other three output files, but don't delete them or the
listing file. The Debugger uses all of them.

After doing a debug compilation, you may find it handy to have a
printout of the listing file. The file looks like this:

Example: Listing From Compilation With Debug Option I

Pascal-2 1RSI V2.1E

7:08 AN Site #1-1 Page 1-1 Oregoa Software, 6915

SU Nacadam Ave., Portland, Oregom 97219, (503) 245-2202 EFACT/DEBUG

Line Stamt

1

O ~NOONEWN

9
10
11
12
13
14
15
16
17
18
19
20

O WO NO R WN -

o3

12

program Efact(output);

var

E, Delta, Fact: real;

§: integer;

begia

E := 1.0;

5 :=1;

Fact := 1.0;

Delta := 1.0;

repeat
E := E 4+ Delta;
§:=s0 +1;
Fact := Fact ¢ §;
Delta := 1 / Fact;

until E = (E ¢+ Delta);
sTite(PWith ’, n:1, ’ terms, ’);
writeln(’the value of ¢ is’,E:18:15);

end.

ss¢e Jo lines with errors detected eee

1-18

Two columns of numbers appear on the left side of each page. The
first column, labeled Line, numbers each line of the source program.
The second column, labeled Stmt, gives the statement number of the

first statement on that line. The statement numbers start at 1 for each
procedure or fanction, increasing by one as each statement is compiled.
The Debugger uses these statement numbers to identify breakpoint
locations in the compiled program.

In the program Efact, for instance, you may want to set a breakpoint
at statement number 7. This is the point at which the approximation
of ¢ changes. If the program compiles correctly but produces unsatis-
factory results, you may set the breakpoint at NATN,7 to monitor the
approximation to e as the program runs. We'll do just that in the next
example.

Notice that the Debugger allows you to set the breakpoints. In this
example, you tell the program to write the value of e at the break-
point and then continue. (See the Debugger Guide for details on these
commands.)

I Example: Setting Breakpoints for Debugger]

>RUN EFACT

Pascal Debugger ¥3.00 -- 12-Aug-83

Debugging program EFACT

} B(MAIN,7) <¥(E);C>

at breakpoint, write B and continue

Program terminated.

} G start program
Breakpoint at HAIB,7 E := E ¢ Delta;
1.0000000E+00

Breakpoint at HAIN,7 E := E ¢ Delta;
2.0000000E+00

Breakpoint at MAIN,7 E := E + Delta;
2.5000000E+00

Breakpoint at NMAIB,7 E := E + Delta;
2.6666667E+00

Breakpoint at MAIN,7 K := E ¢ Delta;
2.7083335E+00

Breakpoint at MAIN,7 E := + Delta;
2.7166669E+00

"Breakpoint at NMAIN,7 E := E ¢+ Delta;
2.7180557E+00

Breakpoint at MAIN,7 E := E ¢ Delta;
2.7182541E+00

Breakpoint at MAIN,7 E := E + Delta;
2.7182789K+00

Breakpoiat at NAIN,7 E := E + Delta;
2.7182817E+00

Uitk 11 terms the value of e is 2.718282000000000

Breakpoint at NAIN,12 writeln(’the value of e is’, E: 18: 15);

.

} e

quit

1-19

The Profiler Finally, let’s examine the program for efficiency by using the protile
switch, which calls in the Profiler. “Profiling” shows the number of
times each statement is executed, giving you the opportunity to opti-
mize sections of code that are executed many times.

To utilize the Profiler, you must build the task using the multiline form
of the TkB command to increase the number of logical units available
to the program (same as for the Debugger). The support library and
Profiler open seven files, 50 you need at least 7 logical units to run
Efact and the Debugger. (The system default is 6.) Although 7 would
suffice, we recommend that you use a larger number than you need, 20
in most cases.

Compile and task-build the program with the commands:

>PAS EFACT/PROFILE

>TIB the multiline form of the command
TEB>EFACT/FP/CP=EFACT,LB: [1,1]PASLIB/LB

X8>/

Enter Optioms:

TEB>UBITS=20

X8>/

Then execute the program. The Profiler takes control of your program
and asks for the name of the profile output file. The default extension
is .PRO. '

[Example: Screen Output From Program Executed Under Profiler’s Control
>RUB EFACT

profile V2.1 12-Aug-83
Profiling program: EFACT

Profile output file name? EFACT — Output goes to default extension
With 11 terms, the value of ¢ is 2.718282000000000

Program terminated.

Profile being gemerated

1-20

The output is a listing file and looks like this:

[Example: Profiler’s Execution Summary]
Pascal-2 RSX ¥2.1E 9-Feb-86 7:06 AN - Site 8$1-1 Page 1-1 Oregon Software, 6915
S¥ Hacadam Ave., Portland, Oregom 97219, (503) 245-2202 EFACT/PROFILE
Line Stmt ’
1 . program Efact(output);
2 var
3 E, Delta, Fact: real;
4 B: integer;
5
1 (-] 1 Dbegia
1 7 2 E :=1.0;
1 8 3 §:=1;
1 9 4 Fact := 1.0;
1 10 5 Delta := 1.0;
10 11 6 repeat
10 12 7 E := E + Delta;
10 13 8 §:= 0§ +1;
10 14 9 Fact := Fact ¢ [;
10 15 10 Delta := 1 / Fact;
16 until E = (E + Delta);
1 17 11 write(PWith ’, n: 1, ? terms ’);
1 18 12 vriteln(’the value of e is’, e: 18: 15);
19 end.

*s¢ Jo lines with errors detected eee

Procedure name

HAID

PROCEDURE EXECUTION SUMMARY

statements

12

times called statements executed

1 57 100.00%

There are 12 statements ia 1 procedures im this program.
57 statements vere executed during the profile.

The leftmost column of the profile listing shows the number of times
each line is executed. The Profiler listing concludes with a “Procedure
Execution Summary” that details each procedure name, the number of
times it is called, the number of statements it contains, and the number
of statements it executes. Note, too, that the summary shows the per-
cent of execution count taken by each program block. (In this example,
with only one procedure, the portion is 100%.) Given this information,
you can attempt to optimize the procedures and statements that use
a disproportionately large part of the time (“90 percent of the time on
10 percent of the program”).

See the Profiler section of the Debugger Guide for more information
and for a much more detailed example.

1-21

Detecting Run-Time
Errors

Errors Detected at
Run-Time

Your Next Step

1-22

The errors discussed so far have been compilation errors—errors de-
tected by the compiler. Run-time errors, on the other hand, occur
when a program is executing, after it has been compiler and linked.

A run-time error such as Array index out of bouads stops the pro-
gram at the point of error. The Pascal-2 error reporting system prints
the error message, then traces the program’s execution history, proce-
dure by procedure, from the point of error back to the main program.

The error traceback, or “walkback,” is intended to make debugging
casier by showing precisely where the program stopped and which pro-
cedures were called to reach that point.

The following is an example of a run-time error and procedure walk-
back. (The program has already been compiled and linked.) Line
numbers appearing in the walkback correspond to line numbers in the
source listing, not line numbers in individual procedures.

$208 CUSTON run program CUSTOM
XP2-F-SUBSCRIPT, Arzray imdex out of boumds —— error message

Error occurred at lime 64 im procedure writelastname
location of error

Last called from lime 90 in procedure buildcustomerfile
Last called from lime 103 im program customers

Thus ends your guided tour through Pascal-2. At this point, you should
be able to run a few simple programs. Before getting into complex
programs, however, you should consult the Programmer Reference, the
Language Specification, and study the guides for the Debugger and the
Utilities, if you wish to use those options.

Pascal-2 V2.1/RSX Programmer’s Reference

Introduction

1/0 Control Switches

The Programmer’s Reference contains nitty-gritty information about
Pascal-2 for programmers well-versed in the Pascal language. This ref-
erence describes, I/O control switches, and Pascal-2’s low-level inter-
action with the PDP-11. This reference also describes ways to handle
common Pascal-related implementation questions on RSX and contains
other miscellaneous information.

This reference is not:

o an introduction to Pascal (see Programming in Pascal by Peter
Grogono);

¢ a new user'’s guide to Pascal-2 (see the User Guide);
o adetailed description of Pascal-2 (see the Pascal-2 Language Spec-

ification).

The reset and rewrite standard procedures accept two additional
arguments specifying the file name of an external file and default fields
of the file name. These arguments can also include I/O control switches
that give explicit control of the operating system interface details. (A
fourth parameter can also be specified. See the Language Specification
for a complete discussion of reset and rewrite.)

The I/O switches appear in the file name or default name parameters
as shown in these examples:

revrite(F,’data/si:12’,’ .dat/seek/span’);
reset(F,Filenams,’/rad/rw’);

A complete list of I/O switches appears below, followed by individ-
ual details. All switches may be abbreviated to the first two letters.
The parameter n is a decimal number unless preceded by a crosshatch
symbol (#), in which case it is an octal number.

/aloc:n (Allocation or Clustersize): The parameter a is the num-
/cl:n ber of 512-byte blocks allocated by the system each time a
file is extended. The parameter n is also the cluster size.
The default cluster size is set by the system manager and is
usually 5 blocks of 512 bytes each. A positive value for n in-
dicates a contiguous allocation; a negative value indicates a
non-contiguous allocation. If n is not a multiple of the de-
fault, the system rounds the value up to the next highest

2-1

2-2

/blk

multiple. The following statement creates a large file named
TEST.TXT with a cluster size of 80 non-contiguous blocks.
Later extensions of the file are allocated in 80-block clusters.

revrite(F, test.txt/cl:-80’);

(Blocked): Records in the file are not to cross disk block
boundaries, allowing faster and easier access than unblocked
records at the cost of additional space. This switch is the de-
fault for record files. See the /span and /aoblk switches for

" the use of unblocked records.

/cco

/cz

/cuzsor

/d1x

(Buffersize): The /buff switch specifies the storage to be
allocated to a file buffer, with n representing the number of
bytes. Pascal-2 normally allocates the minimum space re-
quired for a file buffer, 512 bytes. For disk files this default
value may be raised by multiples of 512 to improve the ef-
ficiency of I/O transfers, at the cost of additional memory.
Line-oriented files such as terminal and line-printer files nor-
mally receive buffer space equal to the width of the line, usu-
ally 80 characters. RSX single-character mode requires the
buffer to be set to 1 byte, as shown in this example:

reset(input,’TI:/buff:1’);

(Cancel Control-O): Used with the terminal, this switch dis-
ables the Control-O (“0) mode and forces the output to the
terminal. (Typing Control-O at the terminal disables output
to the terminal until another Control-O is typed or until an
input operation is performed.) A typical use would be to print
an important error message even if Control-O had been typed.

(Carriage Control): When printed, records in the file are to
be preceded by a line-feed character and terminated by a car-
riage return. Valid only on rewrite statements opening disk
files, this switch is useful for creating a printable file of raw
data records. (For information on the opening of interactive
files, see “Single-Character I/O" later in this guide.) For text
variables this switch is automatically selected.

(Cursor Control): This switch enables terminal-independent
cursor control, allowing Pascal programs to perform cursor po-
sitioning and graphics on a variety of terminals without the
need for recoding for different terminals. The first two charac-
ters on each line are used for specifying the horizontal column
and vertical line number at which the text is to be printed.
Use the chr fanction to specify these special characters. Col-
umn 1 is the first print position of the line. Line 1 is the top
of the screen. If 128 is added to the line number, the screen
is cleared before the line is displayed. Based on these two
characters, the terminal driver generates the necessary cursor
control sequences to position the cursor.

(Don’t Lock): This switch is provided for the rare occasions
when the support library is unable to catch an I/O error and

/1t

/lun:n

‘/ﬁ‘!:n

/nocz

/asp

/rah

close the file (disk files only). Use this switch when you want
to be sure that the file is closed after an error, allowing post-
crash access to the file. Even with the /d1k switch, data in
the file still may be destroyed.

(FORTRAN Carriage Control): The first character of each
record determines the line spacing before displaying the
record, following the FORTRAN conventions. For example,
a ‘1’ in the first print position means a page eject before the

_ rest of the record is printed. This switch may only be used

with text files. For details on carriage control, see the section
on “Terminal I/O” later in this guide.

(Logical Unit Number): This switch allows you to specify the
LUN for a specific file other than the default LUN assigned by
Pascal-2. The switch is useful if you do not want to use Pascal
to access files, for example if you are writing your own low-
level I/O routines. This switch is also useful if a program calls
FORTRAN routines that use files. In this way conflicts with
LUN assignments can be prevented. For more information,
refer to the section on Pascal-2's use of LUNs later in this
guide.

(Multiple Buffering): Used with either the /rak or /wbh
switch, this switch specifies the number of buffers (n) to use
in accessing a file. The number of buffers to use with a file
is dependent upon the file's I/O activity, the number of I/O
operations performed by the program, the number of compu-
tations performed, and the amount of heap storage available
to the program. Multiple buffering allows programs to over-
lap I/O operations with computations, significantly improving
the performance of tasks that handle large volumes of data.
(See “Multiple Buffering” later in this guide for information
on enabling and utilizing the multiple buffering feature on
your system.)

(No Carriage Control): This switch disables the automatic
carriage controls imposed by a device (terminal, line printer,
etc.). Line feed and carriage return characters are omitted
from the file except in the case where the terminal is in FRAP
mode (see the /wal switch, below). This switch is the defanlt
for non-text file variables.

(No Supersede): When a file is created with rewrite and
/asp, this switch causes an error if a file having the same
name and version number already exists. If you specify a
version number but omit /asp, the contents of that version of
the file is replaced with the new contents.

(Read Ahead): Used with multiple buffers, this switch in-
structs the support library to read data from the file into the
file buffer(s) before the information is actually needed by the
program. Thus, program computations overlap file input op-
erations, improving performance. (See “Multiple Buffering”
later in this guide for information on enabling and utilizing
the multiple buffering feature on your system.)

2-3

2-4

/ral

(Read All Bits): This switch prevents characters from being
interpreted on input from the terminal. In this binary input
mode, carriage returns <CR> and escapes <ESC> do not termi-
nate the line, and Control-C (“C) is not passed to the monitor.
Instead, characters are read until the line buffer fills up. This
switch is often used with the /butf:1 I/O control switch to

enable single-character input. For example:

/tcn

/Tae
/noecho

/zo

/zst

/rw

/seek

reset(F, ti:/ral/butf:1’);

Any typed character is returned to the program, including
Control-C.

(Restore Cursor): When this switch is used, the terminal
driver saves the current coordinates of the cursor, prints the
line of output, and then restores the cursor to its original po-
sition. This switch is commonly used in conjunction with the
/cursor file switch to update a field on the terminal with-
out disturbing input or output in progress elsewhere on the
screen.

(No Echo): The terminal driver normally echoes each char-

acter typed as input unless the terminal has been set in no-
echo mode with a SET command. The /rae or /acecho switch
temporarily disables the echoing of input typed at a terminal.
This no-echo mode is often used with single-character input
mode (/buff:1). A good example use of these switches is to
read a password from the terminal without printing (echoing)
it as it is typed.
(Read-Only): Only read accesses to the file are permitted.
This switch is the default for files opened with reset. This
switch permits several users to read the same file simultane-
ously, provided they have all used /ro to open the file. /Ro is
sometimes accompanied by /seek.

(Read With Special Terminators): This switch causes any
non-printing character, such as control characters (e.g.,
RUBOUT, ESC), to terminate a line of terminal input. You can
obtain the actual character that terminated the line from the
file’s 1/O status block by using the file definitions in LIB-
DEF.PAS. ’

(Read-Write): Both read and write access permissions are
available. This is the default for files initially opened with
rewrite. This switch is implied with /seek, and is required
with /apd in order to append information to the end of the
file (details below).

(Direct-Access): The /seek switch permits use of the seek
standard procedure, and allows both get and put opera-
tions on the file variable. /Seek implies the /rw switch.
The /seek/rw switch combination allows you to update files
opened with reset. For read-only files, you must specify /ro
(read-only) to override the /rw default. The seek procedure
is described in the Language Specification.

/shx

/si:n

(Share): This switch permits shared access to the file by mul-
tiple users. Note that Pascal-2 offers no built-in facilities for
record locking/unlocking. You can use the predefined fanction
noioerror to detect locked records. See “I/O Error Trap-
ping” later in this guide for information on moicerror. To
learn more about shared files, consult the section on “Shared

" Access to Files” in the IAS/RSX-111/0 Operations Reference

Manual

(Size): This switch, used with rewrite, specifies the initial
allocation of space for the file. The parameter n is given in
blocks of 512 bytes. A positive value for n allocates contiguous
blocks; a negative value allocates non-contiguous blocks.

/spanned (Spanned): Records in the file are allowed to cross disk
/aoblk block boundaries, making most effective use of space. In files

/temp

/wal

/wbh

/ubt

created or accessed by Pascal-2 programs, fixed-length records
are normally “blocked.” This means that an integral number
of records are stored in one disk block of 512 bytes, with any
remaining storage in that block being unused. The /span and
/aoblk switches cause records to be packed more efficiently,
with records spanning from one disk block to the next. This
action requires additional buffer memory, which is antomati-
cally allocated. Some extra computation also is needed.

Spanned and blocked files are not generally compatible. Files
created with /span or /aoblk should be read with the same
switch.

(Temporary): This switch marks the opened file for deletion
upon close or at program termination. A file created with
no file name, as in rewrite(F), also is marked as a tempo-
rary file. Do not use /temp to delete existing files. Use the
predefined procedure delete to do this. Delete is described
in the Language Specification.

(Write All Characters): This switch is used in sending binary
output to a terminal-like device. With this switch, the ter-
minal driver does not interpret the data. Line-wrap mode
is disabled. This switch is useful with the /mocr file switch,
where 8-bit data is written to a device connected to a termi-
nal interface, such as a plotter, which is not really a terminal
device. In this case, /wal signals binary output mode, and
/nocr prevents the terminal driver from generating carriage-
return and line-feed characters at the end of each line.

(Write Behind): With this switch, control returns to the pro-
gram before a write or put operation has completed. This
overlaps program computations with file output operations,
improving program performance. (See “Multiple Buffering”
later in this guide for information on enabling and utilizing
the multiple buffering feature on your system.)

(Write With Break-Through): This switch causes the output
to be written to the terminal regardless of its current state.
The task must be privileged for this switch to take effect. The

2-5

/PR:0 Task Builder switch should be used with the image file
name in the TKB command line to create a privileged task. Be
careful when using the /wbt switch because of possible side

effects with screen-oriented editors.

The following switches permit access to more specialized capabilities of
the File Control System. The descriptions refer to control fields in the

'File Descriptor Block (FDB), which is described in detail in Appendix

A of the IAS/RSX-11 I/O Operations Reference Manual

/actl:n Sets F.ACTL to the decimal value of parameter n; F.ACTL

/apd

/ext

/tix:n

/ins

/8q

/vaz:n

/wxt

determines the number of retrieval pointers and magnetic tape
positioning characteristics. For example, setting n to 34816
rewinds the tape before the next operation is performed on
the tape, as shown:

reset(T, 'mtO:rstape.dat/actl:34816°);

Sets FA.APD in F.FACC, indicating that records are to be ap-
pended to an existing file. This switch is used solely in con-
junction with the /rw switch to open an existing file, as shown
in this example:

reset(F,Filenams,’/apd/rv’);

Sets FA.EXT in F.FACC, allowing extension of the file. Files
opened with write access are by default opened with extend
and read-write (/rw) access; you would rarely use this switch.

Sets R.FIX in F.RTYP. This indicates a file of fixed length
records of length n; this is the default record structure for
non-text files. For text files opened with this switch, each
record must be exactly n bytes long or an error results.

Sets FD.INS in F.RACC, indicating that put operations in se-
quential mode should update the record and not truncate the
file. This switch is automatically selected when /seek is used.

Sets R.SEQ in F.RTYP to indicate a sequenced file; the sequence
numbers are not readily available to the Pascal programmer.

Sets R.VAR in F.RTYP to indicate a file of variable length
records, with a maximum length of n bytes. This switch can
only be applied to text fils. The default length for text
files is /var:132. This switch is useful when you need to
write lines of text longer than 132 characters; for example,
/vax:256 indicates that lines in the file cannot exceed 256
bytes.

Sets FA.WRT in F.FACC, providing write but not extend access
to an existing file.

External Modules

Pascal-2 implements separate compilation through the concept of an
external module, a program fragment containing at least one procedure
or fanction. External modules are compiled independently of other
program units and combined by the Task Builder. External modules
may be stored in libraries to simplify the handling of common routines.
(See the section “Resident and Cluster Libraries.”)

External modules may reference global variables shared by all of the
modules making up a program. If each module (including the main
program) is compiled with the same global variables, the effect is as
if all modules were compiled together. For this to work properly, the
global declarations in the external procedure and main program must
contain the same variable declarations in the same order. Parameter
lists also must agree (i.e., contain the same parameter declarations in
the same order). The simplest and most efficient way to do this is to
place all global declarations, including references to external procedures
and functions, in a header file then include the header file in the external
module and in the main program, using the ¥inclade compiler directive
(see “Multiple Source Files”).

External routines must be referenced at the outermost (global) level of
a main program, but they may be called from any point in the code.
An external module compilation requires either the nomain compilation
switch or the $ncmain embedded switch. Both switches specify that
no main program is contained in the source file. The nomain switch is
specified on the command line, whereas the $nomain embedded switch
is placed at the beginning of the external module.

An external procedure name consists of the first eight characters of
the procedure or function identifer. External procedure names must
uniquely identify an external routine because they are used as global
symbol names by the Task Builder.

Task-building errors most pertinent to external modules are:

e Duplication of external symbols. An external procedure has been
defined in more than one module. When multiple definitions are
encountered, the Task Builder uses the first definition only and
ignores succeeding definitions.

o Undefined external symbols. The program has referenced an ex-
ternal routine that was not defined in any of the object files or
libraries specified on the command line. This error indicates that
the program contains unresolved global references.

In each case, the Task Builder responds with an error message and
produces an output file that cannot execute (permission bits on the file
are not set).

Two compiler directives, external and nonpascal, allow the use of ex-

ternal modules. The external directive defines a procedure or function
implemented in Pascal-2 as “external,” which means that the procedure

2-7

Calls to Pascal-2 Routines

2-8

may be referenced by other modules and that both the external mod-
ule and the program or module that calls it expects to find the normal
Pascal-2 calling sequence of parameters on the stack. The nonpascal
directive defines a routine written in a language other than Pascal, such
as FORTRAN or MACRO-11, and generates a call to the FORTRAN
interface routine (P$111) in the Pascal support library. P$111 creates
the standard DEC calling sequence of parameters which is expected by
the external module, and which differs from Pascal-2’s.

CAUTION

Observe two cautions when using the external or nonpascal
directive. Parameters to external routines cannot be checked
by the compiler for type conformance across module bound-
aries, 80 an accidental type mismatch may cause unpredictable
results. Also, the compiler cannot verify the conformance of
global data. As mentioned above, use of the {include direc-
tive can help reduce problems in this area. Parameters must
be passed by reference.

The syntax of the external directive is similar to the syntax of the
forward directive in that it consists of two distinct parts: the declara-
tion and the body. The declaration includes the external procedure or
fanction name and the argument list, followed by the exteraal direc-
tive.

procedure GetStriag(Arg: Argtype); this is the declaration
external ; -—— external directive is required

This declaration must appear in the external module and in each com-
pilation unit that calls that external routine. You can place the dec-
laration in a header file and use the ¥imclude directive to insert it
appropriately.

The body of the external module contains the actual code for the pro-
cedure or function and must not include an argument list.

procedure GetString(Arg:Argtype);- — this is the procedure body
begia

end;

The body and declaration must be compiled together in order for the
external procedure to function properly. The external procedure may
then be called in the same way as any other procedure or fanction:

GetString(Leagth) ; -— external procedure call

Example Using External
Directive

The practical application of external procedures is best shown by ex-
ample. The following sample illustrates the declaration and use of ex-
ternal procedures and the correct way to access global variables. Note
that the global declarations must be identical in the external procedure
(CHANGE.PAS) and in the main program (MAINLN.PAS). Note also

‘the use of the $acmain embedded switch in the external procedure.

First, we create a separate header module HDR.PAS containing the
external procedure reference and the program’s global declarations.

Example: Separate Header Module (HDR.PAS) |

type global declarations
GlobalType = record
B: boolean;
V: iateger;
end;
var
Glob: GlobalType;
I: iateger;

procedure Change(P: iateger);
exteraal ; ——————— external directive must appear

The file (CHANGE.PAS) consists of the external procedure Change and
the Xinclude directive, as follows:

| Example: External Procedure (CHANGE.PAS) |

{$nomain} embedded switch
Xinclude hdr.pas header module
procedure Change; no parameters here
begia
with Glob do
begin change global variables
B := true;
V:sV +P;
end;
end;

The external procedure is then compiled with the nomain option em-
bedded, using the command:

>PAS CHANGE

However, you can omit the embedded option and specify the nomain
on the command line in the following manner:

>PAS CHANGE/NONAIR

The externally defined procedure Chazge may now be called within
any program unit that includes HDR.PAS and is task built with
CHANGE.OBJ. For example, assume that the file MAINLN.PAS con-
nists of this:

Example: External Procedures (MAINLN.PAS)

program Nainline;
¥include hdr; external procedure and global declarations

procedure Before;

begia

with Glod do ,
writeln(’Before executing Change, B = ’,B,’ and V =2,V:2,7.?);
end; :

procedure After;

begia
with Glod do
writeln(’After executing Change, B =’,B,’ and V = * V:2,7.?);
end;

begin { program Mainline }
with Glob do
begin initialize global variables
B := false;
vV :=0;
end;
I := 45;
Before;
Change(I); the external call
After;
end.

Compile MAINLN as you would any other main program and task build
the main program and external module, as shown:

>PAS HAINLE
>TKB NAINLE/CP/FP=NAINLE,CEABGE,LB:[1,1]PASLIB/LB

Running the program yields these results:

>RUN NAINLE

Before executiag Change, B = false and V = 0.
After executiag Change, B = true aad V = 45.

2-10

Calls to Non-Pascal-2
Routines

Calling MACRO Subroutines

The nonpascal directive is used instead of external when the exter-
nal procedure is generated by an assembler or a compiler other than
Pascal-2. Noapascal creates an interface between the Pascal-2 calling
sequence generated by the main program or module and the standard
DEC calling sequence required by FORTRAN and most MACRO-11
routines. In addition, when the nonpascal directive is invoked, regis-
ter RS is used as a pointer to the list of parameters. Parameters must
be passed by reference.

Syntax for the aonpascal directive consists of a separate declaration

and body. The declaration contains the name of the procedure or
fanction and the argument list, followed by the nompascal directive.

The external declaration for a MACRO function looks like this:
program Test;

var i: integer;

function afunct (var i: iateger) : imteger; — declaration of

nonpascal; MACRO routine
begin body of the main program
i:= 10;
vritela(afunct(i));
end.

The MACRO routine AFUNCT is written:

; Returas argumeat plus 10

AFUNECT: :
nov @2(x5),r0
add 812,10
rts pc
.end

Type matching for the declaration and use of parameters are the user’s
responsibility.

The sample program Test is compiled with the command:

>HACRO AFUNCT
>PAS TEST
>TKB TEST/CP/FP=TEST,AFUNCT,LB:[1,1]PASLIB/LB
>RUN TEST
20

MACRO routines written with the Pascal-2 PASMAC utility must be
declared as external rather than moapascal, because PASMAC sim-
ulates the Pascal-2 calling sequence.

2-11

Calling FORTRAN Subroutines

2-12

For Pascal programs to call FORTRAN subroutines, two conditions
must be met: all parameters must be passed by reference, not by value,
and FORTRAN subroutines must be declared in Pascal programs with
the noapascal directive.

The procedure foriai, supplied in the Pascal support library, initial-
izes the FORTRAN object library, allowing Pascal programs to call
FORTRAN subroutines. The FORTRAN object library must be ini-
tialized in case the called FORTRAN subroutine calls other subroutines
in that library. If the library is not properly initialized, traps or inac-
curate executions can result. The same initialization is required for
FORTRAN subroutines called from MACRO. After foriai returns,
you should be able to call almost any FORTRAN subroutine.

Declare foxrini as shown:

procedure Foriai; { FORTRAF imitialization routise }
exteraal;

Call the FORTRAN initialization procedure at the first convenient
point in your code, preferably the first statement of the main program.

The program FTEST.PAS shows a way to call FORTRAN subroutines
from a Pascal program. The program reads three integers from the
terminal, calls the FORTRAN subroutine ADDEM to calculate the
sum of the three numbers, then prints the sum.

Subroutine ADDEM.FOR contains these statements:

SUBROUTINE ADDEN(A,B,C,D)

g ADDS A, B, C TO PRODUCE D.
‘ INPLICIT INTEGER (A-2)
DsaA+B+C

RETURN
END

The main Pascal program contains these lines:

[Example: Program With Call to Portran Subroutine]

program FORtest;
var
A, B, C, D: iateger;

procedure ADDEM(var A, B, C, D: imteger);
aonpascal;

begia
write(’Eater 3 values: ’);
readla(A, B, C);
ADDEN(A, B, C, D); { add the awmbers}-— FORTRAN call
writela(’The amswer is ’, D);

end.

Compile and run the program using these commands. Assume that the
FORTRAN subroutine ADDEM has already been compiled.

>PAS FTEST '

>TXB FTEST/CP/FP=FTEST,ADDEN,LB: [1,1]PASLIB/LS

>RUN FTEST

Eater J values: 20 40 120

The amswer is 180

Two restrictions relate specifically to the use of FORTRAN subroutines
in Pascal programs. First, Pascal-called FORTRAN subroutines cannot
access files opened in the Pascal program. However, these FORTRAN
routines can use files that they themselves open.

Second, FORTRAN allows the passing of “null” parameters to sub-
routines, in which a comma is used as a place holder for an optional
parameter. Pascal has no such feature. To pass null parameters to
a FORTRAN subroutine from Pascal, use the origin directive to de-
clare the null parameter. The variable and procedure declaration for
the Pascal program is shown b%low. You may use the same origia
declaration of a null real parameter for real and integer.
var

ListHumber, LastList: iateger;

Bull origin 177777B: integer;

Rewind: boolean;

null integer parameter

procedure FPREW(var Fumber, Last: iateger;
var I: integer; var R: real;
var Rew: boolean);
nonpascal;

The FORTRAN subroutine declaration is then:
subroutine FPREU(Number,Last,I,.R, Rew)

When you call the FORTRAN subroutine from the Pascal program,
substitute the appropriate Jull variable for any unnecesary parame-
ters. In the case of FPREW, the third and fourth parameters are null

parameters:
FPREW(ListNumber,LastList,INull,RBull,Revwind);

2-13

External Module Libraries

Extended Precision

2-14

Suppose you want a library of procedures that can be referenced by any
program. For a particular program, you do not necessarily reference all
the procedures in that library, and you do not want the entire library
loaded with the program.

Procedures and functions from one compilation unit form a single ob-
ject module and cannot be selectively loaded. For example, if proce-
dures A, B, and C are compiled together and placed in a library, any
reference to one of them causes all three to be loaded. On the other
hand, if each procedure A, B, and € is compiled separately and the three
object modules are placed in the same library, then a reference to one
of them causes only that module to be loaded in the program. To keep
final program size to the minimum, library modules should be compiled
separately whenever possible.

Rather than having an external declaration in the main program for
each procedure needed, create a single “header” file containing the ex-
ternal declarations for all the external procedures defined in the library.
This header file can be included in the compilation with the {include
directive placed near the beginning of the program source file. No ex-
ternal reference is generated for any external procedure in the header
file that is not used by the program, so only those modules actually
used by each compilation unit are loaded into the final image file (as-
suming that the library modules modules were themselves separately
compiled). See “Multiple Source Files” for use of the Xinclude direc-
tive. -

By using a header file in this way, you can avoid errors that could
be caused by a mismatched declaration, forcing any change made to
a declaration for an external procedure to be reflected in all programs
using that procedure. Carried to the fullest extent, a library and its
corresponding header file can be used system-wide.

Values of type real are normally stored in the PDP-11 single-precision
format, which requires 2 words of storage per value and offers about
7 decimal digits of precision. The double compilation switch or the
$doudble embedded switch gives double precision to all real values.
Each extended-precision value occupies 4 words of storage and provides
approximately 15-digit precision in all real calculations, inclading the
transcendental functions.

Normal and extended-precision values cannot be mixed in a program:
the double or $double switch generates extended precision for all real
values. All external modules must be compiled with the same precision
as the main program, even if no real variables are present.

In addition, you must use the colon notation output format (e.g.,
E:18:15) to display double precision values in write statements.

Overlays

The Task Builder is capable of creating overlaid tasks, wherein program
memory areas not in use can be shared by other sections. The use
of overlays helps to reduce the memory requirements of a program,
because the entire program does not have to reside in memory.

An overlaid program is divided logically into “segments.” When one
segment is executing, the unused segments are stored in the task im-
age on the disk. When the executing segment finishes its work, it is
overwritten with the next segment to be executed.

Overlays may need to be used if run-time errors such as “not enough
memory” or “stack overflow” cause the program to abort. The ex-
amples presented here give only a brief overview of the RSX overlay
capabilities. If you have any problems, see chapters 5 and 6 of the
RSX-11M/M-PLUS Task Builder Reference Manual for further details
and examples; this overview is oriented only toward Pascal tasks.

The overlay structure of a program can be complicated, so a special
“language” exists to define overlays. That language is the Overlay
Description Language (ODL). An overlay structure is defined in an
ODL file describing each program segment and its position in an overlay
tree. The ODL file has the same name as the root segment, with the
extension .ODL (i.e., MAIN.ODL is the ODL file for MAIN.PAS).
The overlay description file LB:T1,1]PAS.0DL, supplied with Pascal-2,
contains overlay descriptions for the Pascal run-time library and the
File Control Services (FCS) I/O routines. This file describes the way
you overlay the modules in the Pascal support library and the system
I/0 library. Overlaying these two libraries is your first step toward con-
serving space. The examples that follow show you how to use PAS.ODL
to do this. If, after overlaying these libraries, you find that you still
need to shave the size of a program, then try to split up your code into
overlays. \

These overlay structures are defined in PAS.ODL:

R00T The essential support library routines that reside in the root
co-tree. This co-tree must always be specified. (Co-trees are
discussed in the Task Builder reference manual.)

LIBR The remainder of the support library routines. This co-tree
must always be specified.

SYSIO A co-tree for the FCS I/O routines used by Pascal. This co-
tree must always be selected.

SINGLE ' The library routines for single-precision real arithmetic and
transcendental operations. Select this co-tree if your program
uses single-precision real variables or procedures.

DOUBLE The extended-precision library routines. Select this co-tree if
your program uses double-precision real variables or proce-
dures, and is compiled with the double compilation switch.

2-15

2-16

DEBUG2 The Pascal-2 Debugger. Select this co-tree if your Pascal-2
program was compiled with the debug compilation switch.
When you specify this co-tree in an ODL file, the DOUBLE co-
tree is automatically selected to satisy the Debugger’s need
for double-precision arithmetic. For programs using single-
precision, you have to specify SING, a special variant of the
SINGLE co-tree, designed for use with DEBUG2. SING ac-
counts for the fact that the Debugger is itself a Pascal program
compiled with double precision.

To illustrate the use of these structures, consider a Pascal program
named DEMO.PAS. If the program uses integer arithmetic only (no
real numbers), the program’s ODL file contains: ,

aLB: [1,1]PAS.0DL
.R00T ROOT-DENO,SYSIO,LIBR
.END

The first line references PAS.ODL as an indirect file. This file is always
referenced in overlay descriptions. The .RO0T directive in the second
line defines the co-trees selected for the program. R00T, SYSIO, and
LIBR must always be selected. The hyphen ‘-’ is used to place your
program (DENO) in the root. The main program must be in the root
because DEMO.OBJ contains the transfer address for the task. The
.EED directive signals the end of the overlay description.

The following command builds the overlaid task DEMO.TSK. On the
command line, the ODL file is specified with the /HP switch. This
command uses the overlay description file DEMO.ODL to produce the
task DEMO.TSK and the map file DEMO.MAP (the second output
file). DEMO.ODL references the object file DEMO.OBJ as well as the
Pascal overlay file PAS.ODL.

>TKB DENO/FP/CP,DEN0=DENO/NP

When using the Debugger, you must increase the number of logical
unit numbers (LUNs) available to your program when you task-build
the program, as shown below. The default number of LUNS is 6. Since
the Debugger opens several files of its own, we recommend that you
increase the number to 20, to be sure your program can open all its
files. (Extra LUNs use very little memory.)

>TI8
TEB>DENO/FP/CP, DENO=DEN0/NP
ENTER OPTIONS:

TEB>UNITS=20

ne/;

Examples of ODL Files

In the following examples, substitute the name of your program for the
program name DENO.

Example 1. Overlaying a program that uses single-precision arithmetic.
QLB: [1,1]PaS.0DL

.200T ROOT-DEMO,SYSIO,LIBR,SINGLE

.EED

Example 2. Overlaying a program that uses double-precision arith-
metic.
@eLB: [1,1]PAS.0ODL

.200T ROOT-DENO,SYSIO,LIBR,DOUBLE

.END

Example 3. Overlaying a program that uses single-precision and /de-
bug.
@eLB: [1,1]PAS.ODL —

.R00T ROOT-DENO,SYSIO,LIBR,SING,DEBUG2

.END

Example 4. Overlaying a program that uses double-precision and /de-
bug. :

In this situation you do not need to specify the DOUBLE co-tree, because
it is automatically selected by the DEBUG2 co-tree.
eLB: [1,1]PAS.0ODL .

.200T ROOT-DENO,SYSIO,LIBR,DEBUG2

.EID

Example 5. Overlaying external modules.

Sauppose that DEMO.PAS calls three separate modules, SUB1.PAS,
SUB2.PAS and SUB3.PAS. If the procedures in SUB1, $UB2 and SUB3
do not call each other you may overlay them, as shown:
QLB:[1,1]PAS.ODL

.200T ROOT-DENO-+(SUB1,SUB2,SUB3),SYSIO,LIBR

.END

The parentheses indicate that the modules SUB1.0BJ, SUB2.0BJ, and
SUB3.0BJ are to be overlaid against each other (they share the same
memory). The asterisk (*) indicates that the automatic loading mech-
anism should be used.

Example 6. Using complex overlay descriptions.

If the overlay description is complex and does not fit on one line, you
can break up the definitions using “factors.” In this example, the factor
USER is defined by the .FCTR directive. The USER factor is then used
in the .ROOT directive. This example is equivalent to the previous
example.
aLB: [1,1]PAS.0DL
USER: .FCTR DENO-¢(SUB1,SUB2,SUB3)

.R00T ROOT-USER,SYSIO,LIBR

.EID

2-17

Support Library

Initializing the Support
Library

2-18

The Pascal support library is a collection of modules contained in an
object module library called PASLIB.OLB located in LB: [1,1]. When
compiling a program, the Pascal compiler generates subroutine calls
to routines in the Pascal support library. The Task Builder places
these routines in the psect PSLIBR. The entry points in the library
are identified as p$nna where nan is a small integer. Appendix E of
this guide contains a list of these support library entry points. To
see these subroutine calls, inspect the MACRO-11 code generated by
the Pascal-2 macro switch. Support library routines not called by the
compiler have a name instead of a number following the p$.

Most of the routines in the Pascal support library perform I/O oper-
ations or arithmetic computations such as floating-point simulation or
trigonmetric function approximation. Other routines allocate dynamic
memory and report error conditions. Still other routines allow you to
change the run-time error reporting to suit your needs. When you beild
a Pascal task, the Task Builder searches the Pascal support library for
the modules required to run your task. For example, if you compute
a logarithm in your program, the Task Builder includes the support li-
brary module that approximates logarithms ($¥L0G, which defines the
entry point p$102).

In most Pascal tasks, the Task Builder includes from 3K words to 9K
words of library modules.

The Pascal support library is initialized at the start of a Pascal pro-
gram. When a typical execution begins, the system transfers control
to pSbga, the transfer address of the program, and the support library
initialization procedure p$59 is called. This procedure initializes global
variables used by the support library in module $DATA; then it uses the
EXTE$ system directive to expand the program code by 4K bytes to
make room for the stack, which is originally located in low memory.
The routine then moves the stack from low memory to its new location
at the end of the program code.

After the stack is repositioned, control transfers to p$33, the file ini-
tialization routine. P$33 assigns the standard files input and output
(logical unit numbers 5 and 6) to TI:, the terminal. (Logical unit num-
bers are discussed a later subsection and in “Pascal-2’s Use of LUNs”
later in this section.) The support library then transfers control to
the first statement of the program, and execution begins. However, if
the program is being debugged with the Debugger, control transfers
to p$67, the Debugger initialization routine, instead of the program.
This routine initializes the Debugger and opens its files. The Debugger
then takes over execution of the program. (See the Debugger Guide for
details.)

Support Library Data
Definitions

Constants, data and internal file definitions used by the support li-
brary are contained in the file LIBDEF.PAS, included in the Pascal-2
distribution kit. In addition to its use with the support library, this
file is “incladed” in the installation verification program VERIFY.PAS
and the error-reporting module OPERRO.PAS. The LIBDEF routine

-defines the file name block, the file descriptor block and related char-

acteristics, the file variable, and the library work area (psect $$VEX1).
By using the Xinclude directive, users can include LIBDEF.PAS in
any program that accesses the support library’s work area directly.
The example program PFDB.PAS, below, defines a function named
GetFDB, which returns the address of the RSX File Descriptor Block
(FDB) as an integer. The FDB is used by the File Control Services
(FCS) to perform I/O operations on the file. The address of the FDB
for a Pascal file can be used to perform special I/O fanctions such as
spooling the file to the line printer. (See the RSX-11M/11M-PLUS 1/0
Operations Reference Manual for more information.) Also note the use
of the fanction loophole, which is predefined in the compiler and is
used in GetChannel (and GetLUN). See the Language Specification for
details on loophole.

IExample: Program to Print FDB Address (PRINTFDB.PAS)

program PrintFDB;
%¥include p:libdef;

{ Returns the address of the FDB for a Pascal file. UNote: Record devices
such as terminals and lime primters do mot have FDB’s. }

var
I: text;

Filename: packed array [1..

10] of char;

function GetFDB(var I: text): imteger;

var
F: user_file_variable;-

data type defined in LIBDEF.PAS

begin { procedure GetFDB }
F := loophole(user.file.variable,l);
GetFDB := loophole(integer, F-.f£dd);
end; { procedure GetFDB }

begia { program PriatFDB }

write(’Enter a file name: ’);

readln(Filenams);
reset(X,Filenams);

vriteln(’The address of ’,Filename,’’’s FDB is: ’,GetFDB(X));

end. { program PrintFDB }

2-19

Modifying the Support
Library's Global Variables

2-20

To prepare the program for execution, use these commands:
>PAS_PFDB -

>TEB PFDB/FP/CP=PFDB,L3: [1,1]PASLIB/LB

>RUN PFDB .

Enter a file aame: TEST.TIT

The address of TEST.TIT '’s FDB is: 20258

LIBDEF.PAS can also be used to determine the logical unit number
(LUN) of a file already open to a program. Function GetLUS, sup-
plied below, can replace procedure GetFDB in the above example so the
program can print the LUN associated with the file.

function GetLUN(var X: text): imteger;
var
F: user_file_variable;-— data type defined in LIBDEF.PAS

begia { procedure GetLUN }
F := loophole(user.file._variable,Il);
GetLUN := loophole(integer, F-.lun);
end; { procedure GetLUS }

NOTE

The definitions m LIBDEF.PAS are provided for informa-
tional purposes and are subject to change with each release of
Pascal-2. Users who desire a more detailed description of the
internal workings of the Pascal support library must obtain
the library sources.

Certain global variables initialized in the Pascal support library can be
changed at task-build time to fit the needs of a particular application.
The GBLPAT (Global Patch) Task Builder option provides this flexibility.
Pascal-related patches you can perform with the GLBPAT option are:

o You can assign the standard files input and output to different
logical unit numbers (LUNs) than the default.

¢ You can change the event flag number used by the support library.
¢ You can prevent your program from being automatically extended.

o You can prevent your program from attaching to the terminal
(11:).

To use the GLBPAT option, you have to know the name of the root
segment of the program. Determine this from the Task Builder map.
The examples that follow assume that the root segment is PR0G. See
the RSX-11M/11M-PLUS Task Builder Manual for more details of the
GLBPAT option.

Assigning Input and Output to
Different LUNs

Changing the Support Library’s
Event Flag

The standard files input and outpat are opened on LUNs 5 and 6,
respectively, during program initialization. These files can be reas-
signed to other LUNs at task-build time with the GLBPAT option. This
reassignment is necessary if you have an existing program (written
in Pascal, FORTRAN or MACRO-11) that already uses these logical
unit numbers for other files. The global integer variables p$ilua and
pSolun, defined in the module $DATA in the Pascal support library, de-
termine the LUNSs used for input and outpat, respectively. By default,
p$ilua is ‘5’ and p$olun is ‘6.’

For example, if you want iaput to be read from LUN 1 (instead of 5)
and output to be written to LUN 4 (instead of 6), use the following
commands:

>TIB
TKB>PROG/FP/CP=PR0G,LB: [1,1]PASLIB/LB
TIB>/

Entexr Optioas:

TEB>GBLPAT=PROG: P$TLUN: 1
TEB>GBLPAT=PR0G: P$OLUN: 4

8>/

See “Pascal-2's Use of LUNs” later in this guide.

When the support library access a file, two different event flags are
used depending on the type of device being accessed. For I/O to a
directory-structured device such as a disk, the support library uses the
File Control Services (FCS) to access the file. FCS uses event flag
number 32 to synchronize the disk read and write operations. Users
must avoid referencing EFN 32 in their programs. (Refer to the RSX-
11M/M-PLUS 1/0 Operations Reference Manual for more information
on the way FCS uses event flags.) For I/O to a record-oriented device
such as a terminal or line printer, the support library accesses the device
directly using the QI0 (Queune I/O) system directive.

The support library accesses event flag number 17 to test completion
of an I/O operation to a record-oriented device. In case you have an
existing program or package of programs that uses EFN 17, you can
reassign the EFN used by the support library to any unused event flag
number, rather than changing the program code to use another EFN.
The GBLPAT Task Builder option permits this. The event flag number
is stored in the global variable named p$efa in the module $DATA in
the Pascal support library.

The following TKB command illustrates the setting of p$efa to 5. This
command instructs the support library to use event flag number 5 in-
stead of 17 when performing /O operations on record-oriented devices.

>TIB
TKB>PROG/FP/CP=PR0G,LB: [1,1]PASLIB/LB
TEB>/

Enter Optioas:

TEB>GBLPAT=PROG: P$EFE:5

8>//

2-21

The “No-Extend” Patch

The “No-Attach™ Patch

2-22

See the section on “Using Event Flags” later in this guide for informa-
tion on using event flags from Pascal programs. Also see RSX-11M/M-
PLUS Executive Reference Manual for complete details on the use of
event flags.

The global symbol p$aext can be patched to be a §OP (No Operation,
octal 240) instruction, thus preventing Pascal programs from automat-
ically asking RSX for more memory when no space is available on the
free list. This modification may be needed in these circumstances:

® When resident overlays are used (see the RSX-11M/M-PLUS Ex-
ecutive Reference Manual and the Task Builder manual);

o When a Pascal task is mapped to shared common libraries;

o When PLAS directives are being used to change the mapping of
virtual memory.

This patch prevents your program from extending into virtual address
spaces being used for other things. If you use this patch, you must
also explicitly allocate space for $$NEAP with the EXTSCT Task Builder
option, as shown:

>TIB

TEB>PROG/FP/CP=PROG,LB: [1 ,1]PASLIB/LB
8>/

Eater Optioas:

TEB>GBLPAT=PROG: P$NEXT: 240
TEB>EXTSCT=$$HEAP : 20000

Tn8>//

All Pascal tasks attach to the user’s terminal (logical name TI:) when
initialized. You can prevent the Pascal support library from attaching
to TI: by patching the global symbol p$natt to be a BOP instruction
(octal 240). This patch is useful if you wish to execute additional
tasks from the terminal while the first task is executing. This patch
also allows your program to execute MCR command lines from within
the Pascal program. (See “Executing MCR Commands from Pascal
Programs” later in this guide.)

For the root segment PROG, the patch is:

>TIB
TIB>PROG/FP/CP=PR0Q,LB: [1,1]PASLIB/LS
285/

Enter Options:

TEB>GBLPAT=PROG: P$FATT: 240

88>7/

For related information, see “Detaching From the Terminal” later in
this guide.

‘Setting the Length of the
Compiler’s Listing File

With the GBLPAT Task Builder option, you can change the number of
lines the compiler prints on each page of the listing file it generates.
Make the change permanently by modifying the command file PAS-
CAL.CMD, which builds the Pascal compiler. The GBLPAT option, in
this case, patches the location PAGELE+2 to contain the desired number
of lines, not including header lines. The format of the patch is:

>TIB
TEB>PROG/FP/CP=PR0@,LB: [1,1]PASLIB/LB
R8>/

Eater Optioas:

TEB>GBLPAT=NEAP: PAGELE+2: n

8>//

where n is the page length in octal lines of source code. The value
‘66’ is the default page length (54 decimal). If your line printer uses a
different page size, adjust the value 66 up or down as necessary.

2-23

Run-Time
Organization

Form of the Generated
Code

2-24

The run-time organization of a Pascal-2 program is determined by the
compiler, linker, and Pascal-2 support library.

You control compilation with the pas2 command. By default, pas2
instructs the compiler to produce an object file for your program. The
linker combines the object output from the compiler with other object
modules you specify on the command line and with modules called
by the program from the Pascal-2 support library. The linker stores
the executable output. When you run your program, the operating
system then loads the file into physical memory and begins running
the program.

Pascal-2 code is divided into program sections called “psects.” The
psects for the main program and any separately compiled procedures
are combined with the Pascal support library by the Task Builder to
produce an executable task image. The use of multiple psects arranged
in alphabetical order provides greater flexibility for the combination of
individual procedures into a program.

The compiler generates these psects:

CONSTS Contains all constants generated by the compiler. This in-
cludes constants declared by constant declarations or implicit
in the code. This psect also contains jump tables generated by
case statements, 80 there is a complete separation of instruc-
tion references and data references. The CONSTS psects for all
compilation units are concatenated; compiled code does not
attempt to write to this psect.

DIAGS Contains line number and procedure name data used in the
printing of the run-time walkback. The information is encoded
to save space. This psect is not generated if the nowalkback
switch is specified on the command line.

GLOBAL Contains all global variables used in the main program and
external procedures. This psect is arranged so that the global
variables are shared among all procedures. The main program
and all procedures that reference global variables should have
exactly the same declarations. The size of the resulting psect
is that of the largest GLOBAL peect generated by any of the
compilation units.

If the own switch is specified in the compilation, this peect
is instead named with the first six characters of the program
name, allowing multiple global variable segments. Compiled
code writes to this psect.

P$CODE Contains the imstruction code for the compilation unit. The
P$CODE psects for all compilation units are concatenated; com-
piled code does not attempt to write to this psect.

P$DYNL Defines a dynamic link to the Post-Mortem Analyzer, which
prints the walkback. This psect has two words. The first word
is a pointer used by the PMA to trace the stack frames for

the walkback. With walkback enabled, the second word of
this psect contains the address of P$PHA, the entry point of
the PMA. If the nowalkback or aomain compilation switch is

used, the second word contains a zero and no jump is made
to the PMA.

SEIFTS Generated only if the target machine does not have the EIS
hardware option (sim). This psect contains a table of shift in-
structions that simulate multiple shifts. The psect is overlaid
in a manner similar to TABLES and is treated as read-only by
the compiled code.

TABLES Contains bit tables used for access to set elements and indi-
vidual bits within a word. All Pascal compilations generate
this psect, but all copies are overlaid by the Task Builder so
that only a single copy exists in the final program. Compiled
code does not attempt to write to this psect.

The following table summarizes the attributes of the various psects.
Refer to the MACRO-11 manual or the RSX Task Builder Manual for
further information on the meaning of the attributes.

Psect name Attributes

CONSTS 20,D,LCL,REL,CON
DIAGS 20,D,LCL,REL,COS
GLOBAL 1¥,D,GBL,REL,OVR
P$CODE 20,I,LCL,REL,COB
P$DYEL 1¥,D,GBL,REL,0VR
SHIFTS 20,I,GBL,REL,0VR
IABLES = R0.D.GBL.REL.OVR

So that Pascal programs may be included in libraries, each Pascal-2
object file has a module name consisting of the first six characters of
the output file name. Thus a program compiled with the line:

>PAS RESPROG = EDR,INPROG

has the module name RESPRO.OBJ. This compilation performs
“source concatenation.” Note that with source concatenation IN-
PROG.PAS must not contain a program statement or compilation er-
rors result.

2-25

Memory Organization

On the PDP-11, a program has access to 32768 words (frequently ab-
breviated to 32K). The exact arrangement of storage is determined by
the commands to the Task Builder, but a typical program may look
something like Figure 2-1, which represents a snapshot taken during
execution. The numbers are representative; actual values vary from
program to program.

32K
unallocated, available
for heap expansion

20K

heap
16K
------------ stack ----------- |—8P
tables 13K

global variables
constants 9K
program code
[taskheader |

Figure 2-1. Typical Memory Layout of a Pascal Program.

2-26

Task Header The task header contains task parameters and data
required by the executive and provides a storage area in which
the task context is saved.

Program Code The program code section contains the instructions
for the user program, plus any support library modules that
may be required. The support library may add from 3K to
9K words of overhead. The size of this section is determined
by the amount of user code.

Constants The constants section consists of all constants, such as
strings or real constants, needed by the program. The section
also contains the jump tables for case statements. The size
of this section is determined by the user code.

Global Variables The global variables section contains the global
variables used by the Pasc<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>